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Preface

Thirty years after RSA was first publicized it still remains an active research
area. In fact, at the time of writing this preface, there have already been
three contributions, directly relating to RSA, appearing in two of the premier
annual cryptography conferences. Works by May and Ritzenhofen [167] and
Aono [8] were presented at PKC 2009 and work by Aggarwal and Maurer [4]
was presented at EUROCRYPT 2009.

RSA is an extremely well-researched area in cryptography. The original
RSA paper [204], according to SiteSeerx [226], has been cited over 2,100 times.
While there already exist some very nice surveys about the cryptanalysis of
RSA, by Boneh [25], Katzenbeisser [130] and May [165] for example, these are
either already slightly out-of-date (as many new attacks have been discovered
since Boneh and Katzenbeisser’s works) or only focus on one type of attack
(May’s focus is lattice-based attacks). The first aim of this work is to present
an up-to-date collection of the best known attacks on RSA, along with details
of the attacks. In particular, the focus is on mathematical attacks that exploit
the structure of RSA, and specific parameter choices.

In recent years there has also been considerable interest in so-called vari-
ants of RSA. These are cryptosystems that are based on RSA but, generally,
are more efficient than RSA in some way. For example, each of the so-called
fast variants of RSA, as considered by Boneh and Shacham [34], has more
efficient decryption algorithms compared to RSA. There are surveys on the
cryptanalysis of some early variants of RSA, by Joye [122] for example, but
there is no such work for the more recently invented, and prominent, variants.
The second aim of this work is to provide the first cryptanalytic survey of
these best known fast variants of RSA, along details of the attacks. Again,
the focus is on mathematical attacks that exploit the structure of the variants
of RSA, and specific parameter choices.

This book is divided into three main parts: preliminaries, cryptanalysis of
RSA and cryptanalysis of variants of RSA. A brief description of each of these
parts follows.

Part I (Preliminaries) contains some introductory material about the RSA
cryptosystem. It also collects some of the notation and illustrates some of
the techniques used throughout the remainder of the work. Readers already
familiar with the subject may wish to quickly scan this part or skip it entirely.

Part II (Cryptanalysis of RSA) consists of the cryptanalysis of RSA. The
best known attacks on RSA, when using standard decryption, are included
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xviii

here. In particular, we consider attacks that exploit a small public or private
exponent and partial key exposure attacks. I have, somewhat arbitrarily, cho-
sen to view RSA with CRT decryption as a variant of RSA. A brief collection
of some of the earlier attacks on RSA is also given.

Part III (Cryptanalysis of Variants of RSA) consists of the cryptanalysis of
five variants of RSA: CRT-RSA, multi-prime RSA, multi-power RSA (Takagi’s
scheme), common prime RSA and dual RSA. The first three schemes are the
fast variants of RSA, designed to minimize decryption costs. Common prime
RSA is a variant that is designed to resist the known small private exponent
attacks (from Part II) and Dual RSA is a variant that is designed to reduce
the memory requirements of RSA when two instances are needed.

There are some attacks and some variants of RSA that are not included
in this work. The decision of what to include and exclude is in part based on
the contents of my PhD thesis, which was the starting point for this work. In
addition, there are simply too many attacks on RSA and too many variants
to properly survey them in a work of this size. I have tried my best to include
all the major results up to this time and apologize for any oversights that I
have made. Also, as this is a survey, I have made every effort to explicitly give
credit to the original authors of all the results.

There are many people that I would like to thank for their encouragement
and support, either direct or indirect, during the writing of this book. These
include Shalini Aggarwal, Chandra Boon, Leesa Bringas, Erica Carrillo, Mark
Giesbrecht, Sam Hoda, Amy Holly, Tom Holly, Nathan Krislock, Sam Lam,
Mo King Low, Lisa MacDonald, Atefeh Mashatan, Patricia Prokop, Sushmita
Ruj, Rei Safavi-Naini, Sunita Sarkar, Misato Sekita-Krislock, Siamak Shahan-
dashti, Doug Stinson, Patrick Wansbrough and Julie Wong. My apologies to
anyone that I may have missed.

In addition to providing encouragement and support there are some people
who also provided valuable feedback about preliminary chapters of this work.
A special thank you goes to Hadi Ahmadi, Mina Askari, Tamer Fahim, Majid
Ghaderi, Shaoquan Jiang, Charles Lam, Scott Norcross, Peter Olsar, Pieter
Rozenhart, Michal Sramka and Ashraful Tuhin.

Finally, thanks to Bob Stern, Marsha Pronin, Karen Simon and everyone
at Taylor & Francis for their assistance and great patience.

M. Jason Hinek
Windsor, Ontario
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Preliminaries





Chapter 1

The RSA Cryptosystem

The RSA cryptosystem, named after its inventors Ron Rivest, Adi Shamir
and Leonard Adleman, is the most widely known and widely used public-key
cryptosystem in the world today.

For example, as one of the public-key cryptosystems used in the Transport
Layer Security (TLS) protocol and its predecessor, the Secure Sockets Layer
(SSL) protocol, the RSA cryptosystem is used millions of times each day on
the Internet. Essentially, RSA is used to transmit a session key for a symmetric
cryptosystem which is then used to ensure the security of a communication.

In this chapter we briefly review the RSA cryptosystem, including its se-
curity, in general, and efficiency. Some notation and assumptions that will be
used throughout this work will also be introduced. It is assumed that most
readers will already be familiar with public key cryptography and the RSA
cryptosystem. For more information about cryptography and public-key cryp-
tography, see Katz and Lindell [129], Stinson [232] or Menezes, van Oorschot
and Vanstone [169]. For additional material about RSA in particular, see
Katzenbeisser [130], May [162, 165] or Mollin [174].

A brief discussion about variants of RSA is also included.

1.1 Public-Key Cryptography

The notion of public-key cryptography was first publicly developed and
introduced by Diffie and Hellman [66] and Merkle [170] in the mid 1970s. We
refer the reader to Diffie [65] for a history of the beginnings of public-key
cryptography. Based on the definition of a cryptosystem from Stinson [232,
Definition 1.1], we use the following definition for a public-key cryptosystem.

A public-key cryptosystem is a five-tuple (P, C,K, E ,D), where the fol-
lowing seven conditions are satisfied:

1. P is a finite set of possible plaintexts.

2. C is a finite set of possible ciphertexts.

3. K is a finite set of possible keys. K is called the keyspace.

3
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4. For each key in the keyspace K ∈ K, there is an encryption rule encK ∈
E and a corresponding decryption rule decK ∈ D. Each encK : P → C
and decK : C → P are functions such that decK(encK(m)) = m for
every plaintext m ∈ P.

5. For each key K ∈ K and each plaintext m ∈ P, both encK(m) and
decK(encK(m)) are easy to compute.

6. For almost every key K ∈ K, each easily computable algorithm equiva-
lent to decK is computationally infeasible to derive from encK . That is,
it is difficult to decrypt without decK .

7. The encryption rule encK is made public and the decryption rule decK

is kept private.

Alternatively, we can think of a public-key cryptosystem as consisting of
three efficiently computable algorithms: a key generation algorithm, an en-
cryption algorithm, and a decryption algorithm. Here, the key generation
algorithm (either implicitly or explicitly) defines the keyspace K and the en-
cryption and decryption algorithms define the plaintext and ciphertext spaces
P and C.

1.2 The RSA Cryptosystem

The RSA cryptosystem was the first publicly known public-key cryptosys-
tem. Introduced in 1977 in a Scientific American article by Gardner [85], the
full research paper was published a year later by its inventors Rivest, Shamir
and Adleman [204]. The cryptosystem was originally called the MIT public-
key cryptosystem, in reference to the authors’ affiliation at the time.

Using the definition of a public-key cryptosystem given above, we can
specify the original version of RSA, often called textbook RSA, as follows.

The RSA Cryptosystem: Let N = pq be the product of two large primes
p and q, let P = C = ZN (the integers modulo N) and define the keyspace as

K = {(N, p, q, e, d) : ed ≡ 1 (mod φ(N))} ,

where φ(N) = (p − 1)(q − 1) is Euler’s totient function. For each key K ∈ K,
given by K = (N, p, q, e, d), the encryption rule encK : ZN → ZN is defined
by

encK(x) = xe mod N,

and the decryption rule decK : ZN → ZN is defined by

decK(y) = yd mod N,
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for any x, y ∈ ZN . The pair (e, N) is the RSA public key and the triple (d, p, q)
is the RSA private key.

The encryption function encK(x) = xe mod N , where N has unknown
factorization and gcd(e, φ(N)) = 1, is called the RSA function or the RSA
primitive. The product N = pq is called the RSA modulus, or simply the
modulus, the primes p and q are called the RSA primes, e is called the public
or encrypting exponent and d is called the private or decrypting exponent.
Since the public and private exponents must satisfy

ed ≡ 1 (mod φ(N)),

it follows that

ed = 1 + kφ(N),

for some integer k. This equation is called the RSA key equation, or simply
the key equation.

The correctness of the decryption rule, for plaintext elements that are
relatively prime to the modulus, follows from Euler’s theorem. In particular,
recall that

aφ(N) ≡ 1 (mod N),

for any integer a that is relatively prime to N . Given a public key (e, N) and a
plaintext message m ∈ Z∗

N (i.e., m ∈ ZN and gcd(m, N) = 1), the encryption
rule computes the ciphertext

c = me mod N.

Using the decryption rule, and noting the key equation ed = 1 + kφ(N), we
recover the plaintext since

cd mod N ≡ (me)d (mod N)

≡ med (mod N)

≡ m1+kφ(N) (mod N)

≡ m(mφ(N))k (mod N)
≡ m (mod N).

Since m ∈ ZN , it follows that cd mod N = m. For plaintext messages that are
relatively prime to the modulus, the correctness of the decryption rule can
be easily shown using the Chinese Remainder Theorem. Of course, plaintext
messages that are relatively prime to the modulus (i.e., gcd(m, N) > 1) should
be avoided, since their ciphertexts c = me mod N reveal the factorization of
the modulus. In particular, computing gcd(c, N) will reveal a multiple of one
of the RSA primes p or q.

Defining the public and private exponents as inverses modulo φ(N), as
originally done for RSA, provides a sufficient (but not necessary) condition for
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the decryption rule to recover the plaintext from any ciphertext. A necessary
condition is that the public and private exponents be inverses of each other
modulo Carmichael’s lambda function λ(N). This follows, since Carmichael’s
lambda function is, by definition, the smallest number m such that

am ≡ 1 (mod N),

for any integer a that is relatively prime to N . Thus, it is sufficient to define
the public and private exponents as inverses modulo any multiple of λ(N).
For an RSA modulus N = pq, Carmichael’s lambda function is given by
λ(N) = lcm(p − 1, q − 1). Of course, φ(N) is a multiple of λ(N) since

φ(N) = (p − 1)(q − 1)
= gcd(p − 1, q − 1) lcm(p − 1, q − 1)
= gcd(p − 1, q − 1) λ(N),

which allows us to use φ(N) in the key generation algorithm. In current stan-
dards and implementations of RSA (e.g., see PKCS #1 [206]) the public and
private exponents are defined as inverses modulo λ(N).

Throughout this work, we will consider instances of RSA in which the
public and private exponents are sometimes defined as inverses modulo λ(N)
and sometimes defined modulo φ(N). In addition, we only consider instances
of RSA with balanced primes. By balanced primes, we mean that the two
RSA primes are roughly the same size. In particular, for an RSA modulus
N = pq, we assume that

4 <
1
2
N1/2 < p < N1/2 < q < 2N1/2, (1.1)

or equivalently, we assume that p < q < 2p. It follows that when the RSA
primes are balanced, Euler’s totient function φ(N) = (p − 1)(q − 1) satisfies

|N − φ(N)| = |N − (p − 1)(q − 1)|
= |N − (N − p − q + 1)|
= |p + q − 1|
< 3N1/2.

(1.2)

Thus, the modulus N and Euler’s totient function φ(N) have roughly 1/2
of their most significant bits in common. A consequence of this is that
φ(N) < N < 2φ(N). The quantity N − φ(N) is frequently used throughout
the remainder of this work. For notational convenience, we use s to denote
this value. That is, we let

s = N − φ(N) = p + q − 1 < 3N1/2.

Using the less formal algorithm description for a public-key cryptosystem,
we can define the RSA cryptosystem that we consider throughout this work.
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Key Generation: For an input parameter n, the key generation algorithm
consists of randomly generating two balanced primes p and q so that
their product N = pq is an n-bit modulus, choosing a public exponent e
that is relatively prime to both p− 1 and q− 1, and then computing the
private exponent d as the inverse of the public exponent modulo λ(N)
(or modulo φ(N)). The algorithm outputs the public key (e, N) and the
private key (d, p, q).

The algorithm can optionally accept more parameters which specify the
size of the public or private exponent. In this case, once the primes are
found, the exponent with specified size is randomly chosen and the other
exponent is computed as its inverse modulo λ(N) (or modulo φ(N)).

Encryption: The encryption algorithm takes a public key (e, N) and a plain-
text message m ∈ ZN as input and outputs c = me mod N , the cipher-
text.

Decryption: The decryption algorithm takes a private key (d, p, q) and a
ciphertext c ∈ ZN as input, where c = me mod N for some m ∈ ZN ,
and outputs the plaintext m = cd mod N .

The key generation algorithm can be easily modified to allow for a specific
choice of public exponent. For a fixed public exponent, such as e = 216 + 1,
the primes are randomly chosen to satisfy gcd(e, lcm(p − 1, q − 1)) = 1, and
then the private exponent is computed as the inverse of e modulo λ(N) (or
modulo φ(N)).

Whenever one exponent is computed as the inverse of the other exponent,
it is expected with high probability that that exponent will be full sized. By
full sized, we mean that the size of the exponent is roughly the maximum
size that it can possibly be. For example, when the exponents are defined
modulo φ(N), a full sized exponent will have a size that is roughly the same
as φ(N). Since N and φ(N) are the same size (as shown above), it follows
that a full sized exponent is roughly the same size as the RSA modulus. Even
when the exponents are defined modulo λ(N), it is still expected that a full
exponent is roughly the same size as the modulus. This follows since it is
expected, with high probability, that λ(N) is roughly the same size as φ(N)
when the RSA primes are generated randomly. In particular, it is expected
that g = gcd(p − 1, q − 1) is small. In Tables A.1 and A.2 from Appendix A,
we show the observed distribution for g for various sizes of primes. As the
data illustrates, the value of g is very likely to be a small number. Since
φ(N) = gλ(N), it then follows that the size of φ(N) and λ(N) are expected
to be very close.

As shown by Sun and Yang [238], it is also possible to generate instances
of RSA with small public and private exponents. In this work however, we
only consider instances of RSA with at most one small exponent.

It should be emphasized that this version of RSA that we consider is not
what is actually used in practice. When implementing RSA, using one of the
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industry standards such as PKCS #1 [206], a randomized padding scheme is
also used. This is essential to prevent certain attacks (as will be shown later
in this work) and allows for the construction of a semantically secure version
of RSA.

1.3 The Security of RSA

The security of RSA relies on the difficulty of solving the so-called RSA
problem. Given an RSA public key (e, N) and a ciphertext c = me mod N ,
the RSA problem is to compute the plaintext m. Essentially, it is the prob-
lem of computing e-th roots modulo N , or inverting the RSA function. Since
determining the actual hardness of the RSA problem is an open problem, we
actually rely on an assumption that it holds. In particular, we have the RSA
assumption, which asserts that the RSA problem is hard to solve when the
plaintext m ∈ ZN is randomly chosen and the modulus is sufficiently large
with randomly generated primes.

Since RSA was invented, there has been no evidence, known to the public,
to suggest that the RSA assumption is untrue. For more information about
the RSA problem, see Rivest and Kaliski [202].

1.3.1 Integer Factorization

Another problem that is commonly associated with the security of RSA is
the well-known integer factorization problem. Simply put, the integer factor-
ization problem is to find a non-trivial factor of a given integer.

Notice that if the RSA modulus could be factored, then the private ex-
ponent d, for any valid public exponent e, can be efficiently computed and
hence all encryptions using the public key (e, N) can be decrypted. That is,
we can efficiently solve the RSA problem for the public key (e, N) and any
valid ciphertext. Therefore, the RSA problem is no harder to solve than the
integer factorization problem.

It is unknown, however, if the converse is true. That is, it is unknown
if solving the RSA problem allows one to efficiently solve the integer factor-
ization problem. This is the most important open problem regarding RSA.
There is some evidence that suggests that solving the RSA problem may be
easier to solve than factoring, for certain public exponents, but it is by no
means conclusive. Research into this problem has been done by Boneh and
Venkatesan [35], Brown [37], Joux, Naccache and Thomé [121] and Aggarwal
and Maurer [4].

Even though the RSA problem may actually be easier to solve than the
integer factorization problem, it is assumed in practice that they are equiv-
alent. The level of security of an instance of RSA is based on the estimated
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difficulty of factoring the modulus. For example, using best known generic fac-
toring algorithm, the general number field sieve, it is expected that a 1024-bit
modulus can be factored with roughly 280 operations. Thus, a 1024-bit RSA
is assumed to offer the same security as an 80-bit one time pad. Currently,
1024-bit moduli are recommended for non-critical encryption.

1.3.2 Breaking RSA

Since the integer factorization problem implies the RSA problem, we can
break RSA by factoring the modulus. There are several notions of breaking
a cryptosystem and this corresponds to a total break. If the factorization of
N = pq can be found then we can compute the private key (d, p, q) for any
public key (e, N). Thus, we can solve the RSA problem for any public key
with modulus N . Some of the attacks in Chapters 3 and 4 can only achieve
a partial break. That is, the attacks can only recover the plaintext of certain
ciphertexts and they are not able to factor the modulus. In general though,
the aim of the attacks that we consider is to factor the modulus of a given
instance of RSA.

There are several ways in which we can factor an RSA modulus. The obvi-
ous way is to factor the modulus using one of the known factorization methods.
Other ways include computing the private exponent d or computing Euler’s
function φ(N), since computing either of these is equivalent to factoring the
RSA modulus.

Consider Euler’s phi function φ(N) = (p−1)(q−1). When φ(N) is known
for an RSA modulus, we can efficiently factor the modulus by simply solving
the system of equations

N = pq

φ(N) = (p − 1)(q − 1),

for the unknown primes p and q. In fact, it is easily shown that p and q are
the two solutions of the quadratic equation

x2 − (N − φ(N) + 1)x + N = 0.

Therefore given φ(N), we can efficiently factor the modulus. We can also
efficiently factor the modulus given λ(N). It was shown by Simmons [224],
that gcd(p − 1, q − 1) is the only even number satisfying

N

λ(N)
− 2 < gcd(p − 1, q − 1) <

N

λ(N)
.

Therefore given λ(N) and gcd(p − 1, q − 1), we can simply compute

φ(N) = gcd(p − 1, q − 1)λ(p − 1, q − 1),

and use the above method to factor the modulus.
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A more general result involving φ(N) and λ(N) can also be used to proba-
bilistically factor the modulus. Let N = pv1

1 · · · pvr
r be the prime factorization

of some odd integer N . Consider the three functions

φ(N) = pv1−1
1 · · · pvr−1

r (p1 − 1) · · · (pr − 1)

λ(N) = pv1−1
1 · · · pvr−1

r lcm(p1 − 1, . . . , pr − 1)
λ′(N) = lcm(p1 − 1, . . . , pr − 1),

where φ(N) is Euler’s totient function and λ(N) is Carmichael’s lambda func-
tion. Using a result of Miller [173, Lemma 4], a Las Vegas algorithm can be
constructed that (probabilistically) factors N in polynomial time given a mul-
tiple of λ′(N). Since both φ(N) and λ(N) are multiples of λ′(N), it follows
that we can (probabilistically) factor N given a multiple of any of the func-
tions listed above. Therefore, knowing a multiple of φ(N) or λ(N) is sufficient
to (probabilistically) factor the RSA modulus. For an example of an algorithm
that factors an RSA modulus given φ(N), see Stinson [232, Algorithm 5.10].
For more details in general, see Miller’s original work [173].

Now consider when the private exponent is known. From the key equation

ed = 1 + kϕ(N),

where ϕ(N) is equal to φ(N) or λ(N), depending on how the public and
private exponents are defined, it follows that with d known we can compute

ed − 1 = kϕ(N).

Since ϕ(N) is a multiple of λ′(N), we can use Miller’s results to probabilisti-
cally factor the modulus. Therefore, given the private exponent we can prob-
abilistically break RSA.

When the public and private exponents are defined as inverses modulo
φ(N), it has also been shown that the modulus can be deterministically fac-
tored in polynomial time given the private exponent d, provided that public
and private exponents satisfy ed < N2. This has been shown by May [163]
and later refined by Coron and May [58].

1.3.3 Cryptanalysis of RSA

There are many different types of attacks on RSA. For example, there are
many kinds of side-channel attacks, which exploit some physical property
of the device that RSA is implemented on. Some of these include fault injec-
tion attacks [27, 9, 216, 176, 16], timing attacks [133, 38, 3], power analysis
attacks [134, 171, 76] and branch analysis attacks [1, 2]. For more information
about these attacks, see Koc [132]. An extensive database for side-channel
attacks in general can be found at [200].

Other types of attacks focus on the human component of security. Social
engineering attacks can be used to exploit human behavior. Here, some
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information is extracted from a user by using some kind of manipulation. For
example, a pass-phrase that secures an RSA private key might be revealed
by calling a person in the middle of the night in a frenzied voice claiming
there was an emergency at work and the pass-phrase was needed. In so-called
rubber-hose attacks, some information may be extracted by force or by the
threat of force.

The attacks that we considered are removed from the physical world that
RSA is used in. The attacks are based on the mathematical structure of the
RSA cryptosystem (the form of the modulus or the key equation) and exploit
certain parameter choices (such as using a small public or private exponent).
We also include attacks that use some knowledge of the private key, but are
not concerned with how that information is obtained.

1.3.4 The Homomorphic Property of RSA

RSA has the multiplicative property that the encryption of the product of
two plaintext messages is the same as the product of the encryptions of the
two plaintext messages, when reduced modulo N . This property, often called
the homomorphic property of RSA, follows from the basic properties
of modular multiplication. Exploiting this homomorphic property of RSA,
Davida [60] showed that textbook RSA is insecure against a chosen ciphertext
attack1. A simplification of the attack by Judy Moore2 is as follows. Suppose
an adversary is given a ciphertext c = me mod N and wants to compute
m. Selecting a random x ∈ ZN , the adversary asks for the plaintext of the
ciphertext c0 = cxe mod N . Since the requested plaintext m0 satisfies

m0 = c0
d mod N = (cxe)d mod N = cdxed mod N = mx mod N,

the adversary, given m0, can simply compute m = m0x
−1 mod N to recover

the desired plaintext.
Another attack that uses the homomorphic property of RSA is by Boneh,

Joux and Nguyen [33]. Their attack uses the fact that, in practice, RSA is
mostly used to encrypt short messages (generally a session key for a symmetric
key cryptosystem). Essentially, their attack is a meet-in-the-middle attack that
assumes that the desired �-bit plaintext m can be factored into two �/2-bit
factors m1 and m2 (i.e., m = m1m2). The attack begins by constructing
a table containing each �/2-bit number m′

1 and its encryption (m′
1)

e mod
N . Then, for each possible �/2-bit number m′

2, the value c(m′
2)

−e mod N is
checked against each encryption in the table. When m′

2 = m2, it follows that

c(m2)−e mod N = (m1m2)e(m2)−e mod N = (m1)e mod N,

1Given a ciphertext c, a chosen ciphertext attack allows the adversary to choose a number
of ciphertexts, not including c, and obtain their corresponding plaintexts in order to assist
in decrypting c.

2Denning credits, without reference, the simplification to Moore in [64].
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will be in the table. When this match is found, the factorization of the plaintext
m, and hence m itself, is revealed. The attack needs to compute as many as
2�/2+1 modular exponentiations, needs to store 2�/2� pairs of numbers in the
table, and succeeds with probability 18% (over the choice of the plaintext m).

These attacks are easily avoided by imposing some structure on the plain-
texts. In particular, using a proper padding scheme, such OAEP [12], is suffi-
cient.

1.3.5 Semantic Security

Recall that a semantically secure cryptosystem is a cryptosystem in which
no information about the plaintext of a given ciphertext (and known public
key) can be determined with non-negligible probability.

The RSA cryptosystem as we have defined it above is clearly not a se-
mantically secure cryptosystem. In particular, any deterministic cryptosys-
tem cannot be semantically secure. Given two plaintext messages and the
ciphertext of one of them, an adversary can always determine which plain-
text corresponds to the ciphertext (by simply encrypting the plaintexts and
comparing). Therefore, any cryptosystem that is semantically secure must be
probabilistic.

In addition, it is easily shown that the Jacobi symbol of the plaintext
(and modulus) is exposed by the Jacobi symbol of the ciphertext (and the
modulus). In particular, it can be shown that( c

N

)
=
(m

N

)
,

for any plaintext m and its corresponding ciphertext c. Thus, some information
about the plaintext is revealed given only the ciphertext and the public key.
For more details see Stinson [232, Chapter 5].

When RSA is implemented with OAEP (see [12]), however, it can be shown
that it is semantically secure provided that the RSA assumption holds. It was
shown for public e = 3 by Shoup [218] and in general by Fujisaki, Okamoto,
Pointcheval and Stern [79]. All of the proofs are in the random oracle model.
Other padding schemes can also be used to make RSA secure. For example
see Shoup [218] and Boneh [26].

1.4 Efficiency of RSA

We briefly consider the efficiency of RSA. In particular, we consider the
computational costs for prime generation and modular exponentiation which
are the dominant operations for the key generation algorithm and the encryp-
tion/decryption algorithms, respectively.
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1.4.1 Prime Generation

The key generation algorithm for RSA needs to generate two random
primes that are each roughly the same size. Using the Miller-Rabin primality
test with trial division, we can generate an n-bit random (probable) prime
with expected runtime O(n4/ log(n) + tn3) (see Shoup [219, Section 10.4]).
The method mistakenly outputs a composite number instead of a prime num-
ber with probability at most 4−t. This complexity assumes simple quadratic
arithmetic and can be improved by using a faster multiplication method, but
the complexity is at least O(n2) even with the fastest known methods. For
large modulus sizes this can be a costly operation, especially if many primes
need to be generated.

There are many fast prime generation algorithms, but none can signifi-
cantly improve on this bound. For example, see Maurer [159], Joye, Paillier
and Vaudenay [125] or Joye and Paillier [124]. For more information on pri-
mality tests in particular see Schoof [215].

1.4.2 Modular Exponentiation

Encryption and decryption in RSA consist of modular exponentiations.
These operations can be very costly when the exponent and the modulus are
large. For a b-bit exponent B and an n-bit modulus N , consider the modular
exponentiation

XB mod N,

for some X ∈ ZN . There are many different modular exponentiation algo-
rithms (see Gordon [89] or Menezes, van Oorschot and Vanstone [169, Section
14.6]) but, essentially, the complexity of this computation can be reduced to
counting the number of modular multiplications. For example, using the stan-
dard square-and-multiply method requires about b multiplications and wt(B)
squarings, where wt(x) is the number of ones in the binary representation of
x (called the weight of x). When the number of ones and zeros in the binary
representation of B are about the same, this leads to about 3

2b multiplications
in total. In general, the number of modular multiplications needed is linear in
the bitlength of the exponent, unless you allow for an exponential number of
pre-computations and storage for these values. We will assume, for simplicity,
that the expected number of multiplications is 3

2b. Using this simplification,
when comparing the computational costs of two modular exponentiations with
the same modulus, XB mod N and Y A mod N for example, we expect the ra-
tio of the costs (or runtime) to be equal to the ratio of the bitlengths of the
exponents. If A is an a-bit integer and B is a b-bit integer, then a/b is the
expected ratio of runtimes for these exponentiations.

When comparing the costs of modular exponentiations with different size
moduli, the costs of the multiplications must be considered. Let M(n) be the
complexity of a general modular multiplication with n-bit multiplicands and
an n-bit modulus. Here, M(n) may represent the number of bit operations or
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word operations needed. The cost of computing XB mod N is then expected
to be

3
2

b M(n).

Depending on the implementation details, the specific complexity of M(n)
can vary between almost linear and quadratic. At worst M(n) is quadratic in
n, which corresponds to the classical quadratic arithmetic. It is typical in the
literature to assume this basic quadratic complexity. There are faster meth-
ods like using Karatsuba’s method for multiplication, which has complexity
nlog2(3) ≈ n1.59, and even better methods that approach linear complexity
(see von zur Gathen and Gerhard[247] for more detail). In practice, the choice
of multiplication method depends on the size of the modulus. The (asymp-
totically) faster multiplication methods generally require more overhead and
are not actually faster until a very large modulus is used. As a result, in or-
der to compare the complexity of two modular exponentiations with different
modulus sizes, the range of moduli sizes and specific algorithms used for the
implementation needs to be known.

1.5 RSA Signature Scheme

When Rivest, Shamir and Adleman [204] presented RSA, the RSA primi-
tive was used to construct both an encryption scheme and a digital signature
scheme. Essentially, and simplistically, the decryption operation can be used
to sign a document and the encryption operation can be used to verify that
signature. For more details see Menezes, van Oorschot and Vanstone [169,
Section 11.3] or PKCS #1 [206]. In this work we only consider RSA (and its
variants) as an encryption scheme.

1.6 Variants of RSA

In the patent for RSA [205] (filed in 1977), Rivest, Shamir and Adleman
comment that

“In alternative embodiments, the present invention may use a
modulus n which is a product of three or more primes (not nec-
essarily distinct). Decoding may be performed modulo each of the
prime factors of n and the results combined using “Chinese remain-
dering” or any equivalent method to obtain the result modulo n.”
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Thus, the notion of modifying RSA has been known since it was invented.
The main reason for considering variants of RSA is to improve the efficiency
of RSA in some way.

In Part III of this work, we consider the cryptanalysis of five variations
of RSA. The first three variants in Chapters 8–10 are so-called fast variants
of RSA, as mentioned in [34]. These variants allow for faster key generation
and faster decryption than standard RSA. The efficiency of these (and other)
schemes are considered by Vuillaume [248] and Ali-Al-Mamun et al. [6]. The
next variant in Chapter 11, is designed to be resistant to known attacks on
RSA and is essentially a very special case of RSA (in which the RSA primes
have a special structure). The final variant that we consider, in Chapter 12,
is designed to reduce the memory (space) requirements needed to store the
public and private keys when two instances of RSA are needed.

In addition to these variants, there are many others that we do not consider
in this work. We give a partial list of these schemes below.

In 1979, Rabin [199] presented a cryptosystem (and signature scheme)
whose security is provably equivalent to factoring. Rabin’s scheme is the most
well known (and the earliest) cryptosystem that can be considered as a variant
of RSA. The scheme uses the encryption function encN,b(x) = x(x+b) mod N ,
where b is some fixed value (typically assumed to be b = 0) and N is an RSA
modulus with specially chosen primes so that decryption is possible. For exam-
ple, if the primes p and q are chosen so that p ≡ q ≡ 3 mod 4 then square roots,
modulo p and modulo q, can be computed which allows us to compute partial
decryptions (modulo p and modulo q). These solutions are then combined us-
ing the Chinese remainder theorem to recover the plaintext. Since there are
two solutions for each square root computation, this leads to four possible
plaintexts. Some redundancy in the plaintext is then needed to recover the
correct plaintext. For this reason, Rabin’s scheme is more suitable for a sig-
nature scheme than for a cryptosystem. In fact, a variant of Rabin’s scheme
leads to an extremely efficient signature scheme (see Bernstein [15]). Other
variants that are provably secure as factoring include those by Williams [250],
Kurosawa, Ito and Takeuchi [138] and Kurosawa and Takagi [139].

In 1981, Müller and Nöbauer [177] used Dickson polynomials in the en-
cryption rule. The use of other permutation polynomials was considered by
Lidl and Müller [149]. The Dickson-scheme was reinvented in 1993, using Lu-
cas sequences, by Smith [227] (see also [228]). Variants using elliptic curves
were also proposed by Koyama, Maurer, Okamoto and Vanstone[135] and
also by Demytko [63]. The cryptanalysis of these early variations is consid-
ered by Joye [122] and Joye, Quisquater and Takagi [126], amongst others. A
multi-dimensional variant is considered by Cao [39]. A more recent generaliza-
tion is given by Li [148] (see also [195]). Several other variants are presented
by Takagi and coauthors (e.g., see Hühnlein, Meyer and Takagi [115], Tak-
agi [239, 240, 241], Sakurai and Takagi [208] and Kurosawa and Takagi [139]).

Consider RSA restricted to the group Z∗
N (the group of units of ZN ). In

this group, notice that computing e-th powers can be done efficiently but
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computing e-th roots is (believed to be) difficult. Computing the group order,
which is given by φ(N), is also difficult. The security of RSA (in this group)
relies on both computing e-th roots and computing the group order being
difficult. In general, any group that satisfies all of these properties can be
used to construct an RSA-type cryptosystem.

1.7 Additional Notes

There are at least two histories of the advent of public-key cryptography.
The usual, and publicly documented, history is that public-key cryptography
was developed by Diffie, Hellman and Merkle in the mid 1970s and that the
first public-key cryptosystem was invented by Rivest, Shamir and Adleman in
1977. See Diffie [65] for a nice early history of public-key cryptography.

A second history, however, was established in 1997, when the British Gov-
ernment Communications Headquarters (GCHQ) unclassified several docu-
ments which claimed that the ideas of public-key cryptography had been
secretly developed by some of its members in the early 1970s. In particu-
lar, it is claimed that the notion of non-secret digital encryption (essen-
tially public-key cryptography without the concept of digital signatures) was
developed by Ellis [73] in 1970, that the equivalent of the RSA cryptosys-
tem (for encryption only), was developed by Cocks [45] in 1973, and what is
known as the Diffie-Hellman-Merkle key exchange method was developed by
Williamson [252, 253] in 1974. While none of the original documents exist (or
have been made public), it is generally acknowledged that this secret devel-
opment of public-key cryptography did indeed occur. See Ellis [74] for a brief
summary of this history.

It has also been claimed that the American National Security Agency
(NSA) had developed public-key cryptography in the 1960s. These claims are
without substantiation, but make for an interesting read (see Bellovin [13] for
more information).

To further illustrate the dominance of RSA in practice, consider that as
of April 2007, VeriSign, the world’s largest SSL certificate dealer, used RSA
exclusively for the public-key component in all of the certificates that they
had ever issued up to that point (more than 500,000 certificates). At that
time there were about 61,000 sites secured with active VeriSign certificates
and it was estimated that the VeriSign Secured Seal was viewed on average
80–100 million times daily.



Chapter 2

Some Notation, Mathematics and
Techniques

This chapter contains a brief overview of some of the notation and mathemat-
ics used in the attacks that we consider in the remainder of this work. For
the mathematics, it assumed that the reader is already familiar with these
topics and we simply review some important results. References are provided
if more detail is needed. In addition, we also outline the main techniques that
are used for the majority of the attacks that we consider.

2.1 Some Notation

The following notation will be used throughout the remainder of this work,
unless otherwise noted.

Sets: We use Z, Q and R to denote the set of integers, rational numbers and
real numbers, respectively. For any positive integer N , we use ZN to denote the
ring of integers modulo N and Z∗

N to denote the set of units of ZN . Thus, ZN

consists of the numbers {0, . . . , N − 1} and Z∗
N contains all of these elements

that are relatively prime to N .

Vectors: For any vector x = (x1, . . . , xn) ∈ Rn, we use ‖x‖ to denote the
usual Euclidean norm and ‖x‖∞ to denote the infinity norm. That is, for any
vector x = (x1, . . . , xn), we have

‖x‖ =
( n∑

i=1

|xi|2
)1/2

and ‖x‖∞ = max
1≤i≤n

{ |xi|
}
,

where |a| denotes the absolute value of a. When referring to the norm, length
or size of a vector, we always mean the Euclidean norm unless explicitly stated
otherwise. For any two vectors x, y ∈ Rn, we use 〈x, y〉 to denote the usual
inner (or dot) product of the two vectors. That is, if x = (x1, . . . , xn) and
y = (y1, . . . , yn) then the inner product of x and y is given by

〈x, y〉 =
n∑

i=1

xiyi.

17
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We sometimes use �x to denote the vector x when there may be confusion as
to whether x is a vector or a scalar. In general though, we simply use x for
both scalars and vectors.

Polynomials: The polynomial h(x1, . . . , xn) ∈ R[x1, . . . , xn] is a polyno-
mial in the n indeterminates x1, . . . , xn with coefficients from the ring R. We
are mostly concerned with polynomials with coefficients from Z or ZN . For
any polynomial h(x1, . . . , xn), we use ‖h(x1, . . . , xn)‖ to denote the Euclidean
norm of the coefficient vector of h(x1, . . . , xn) and ‖h(x1, . . . , xn)‖∞ to denote
the infinity norm of the coefficient vector of h(x1, . . . , xn). The coefficient vec-
tor of a polynomial is simply a vector whose components are the coefficients
of that polynomial. Thus, given a polynomial

h(x1, . . . , xn) =
∑

i1,...,in

ai1,...,in
xi1

1 · · ·xin
n ,

the Euclidean and infinity norms are given by

‖h(x1, . . . , xn)‖ =
( ∑

i1,...,in

|ai1,...,in |2
)1/2

‖h(x1, . . . , xn)‖∞ = max
i1,...,in

{ |ai1,...,in |
}
.

The infinity norm of a polynomial is also called the height of a polynomial.
When working with the coefficient vectors of polynomials, we will assume

that there is an underlying ordering to the vector components. This ordering
will depend on each particular situation, but will be constant throughout that
situation. For example, if we are considering the polynomials

h1(x, y) = 1 + 2x + 3xy

h2(x, y) = 7 + 2xy + 4x3,

we might order the components of their corresponding coefficient vectors by
increasing total degree of each monomial. Thus, the coefficient vectors for h1

and h2 would be given by

(1, 2, 3, 0) ← h1(x, y)
(7, 0, 2, 4) ← h2(x, y),

if we only consider the monomials {1, x, xy, x3}.
Asymptotic Notation: When describing the asymptotic nature of a func-
tion we use both little-oh and big-oh notation. These are defined as follows.

A function f(n) is said to be little-oh of a function g(n), which is denoted
by f(n) ∈ o(g(n)), if for any constant c > 0 there exists a constant n0 > 0
such that 0 ≤ f(n) < cg(n) for all n ≥ n0. Thus, we have

lim
n→∞

f(n)
cg(n)

= 0,
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for any constant c > 0. The intuitive notion of little-oh is that if f(n) ∈
o(g(n)), then f(n) is negligible compared to g(n) for all sufficiently large
values of n. A function that is o(1) is negligibly small for large enough n.

A function f(n) is said to be big-oh of a function g(n), which is denoted
f(n) ∈ O(g(n)), if there exist constants c > 0 and n0 > 0 such that the
functions satisfy 0 ≤ f(n) ≤ cg(n) for all n ≥ n0. Thus, we have

lim
n→∞

f(n)
g(n)

≤ c,

for some constant c > 0. Informally, if f(n) ∈ O(g(n)), then f(n) is no larger
than some constant multiple of g(n) for all sufficiently large values of n. A
constant function is O(1).

When using both little-oh and big-oh notation, we will always assume that
the function g(n) is the smallest simple function such that f(n) ∈ o(g(n)) or
f(n) ∈ O(g(n)), so that a good intuitive notion of f(n) is understood. Consider
f(n) = n2+n log(n)+1 for example. While it is true that f(n) ∈ O(n5), this is
much less meaningful than saying f(n) ∈ O(n2). In many situations however,
it may be sufficient to simply say that f(n) is polynomial in n.

2.2 Some Mathematics Results

Chinese Remainder Theorem: Recall that the Chinese remainder the-
orem allows us to solve systems of congruences. In particular, we have the
following result.

Theorem 2.1 (Chinese Remainder Theorem). Let m1, . . . , mn be positive
integers that are pairwise relatively prime and let a1, . . . , an be integers. The
system of congruences

x ≡ a1 (mod m1)
...

x ≡ an (mod mn),

has a unique solution modulo M =
∏n

i=1 mi. Further, letting Mi = M/mi for
each i = 1, . . . , n, the solution is given by

x =
n∑

i=1

aiMi(M−1
i mod mi) mod M.

Throughout the remainder of this work we will refer to this result as simply
the Chinese remainder theorem, or CRT for short, and use the phrase
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Chinese remaindering to denote the application of the result. Typically,
Garner’s algorithm is used to efficiently compute the desired solution (see
Menezes, van Oorschot and Vanstone [169, Section 14.5.2]). The result is es-
pecially useful for RSA, since computations in ZN can first be done separately
in Zp and Zq and then combined (via Chinese remaindering) to recover the
solution in ZN .

For a proof of this result, see Stinson [232]. For more information about
the Chinese remainder theorem and some of its applications in cryptography
see Ding, Pei and Salomaa [67].

Gram-Schmidt Orthogonalization: We recall the Gram-Schmidt Or-
thogonalization process. Given m linearly independent vectors b1, . . . , bm ∈
Rn, define the vectors b∗1, . . . , b

∗
m ∈ Rn by the recurrence

b∗1 = b1,

b∗i = bi −
i−1∑
j=1

μi,jb
∗
j for 2 ≤ i ≤ m,

where μi,j = 〈bi, b
∗
j 〉/‖b∗j‖2 are called the Gram-Schmidt coefficients. We

will call b∗1, . . . , b
∗
m the Gram-Schmidt orthogonalization of b1, . . . , bm. The

Gram-Schmidt orthogonalization process creates an orthogonal basis for the
span of the b1, . . . , bm.

Resultant: The resultant of two polynomials f(�x, y) and g(�x, y), with re-
spect to the variable y, is defined as the determinant of the Sylvester matrix
of f(�x, y) and g(�x, y) when considered as polynomials in the single indetermi-
nate y. Writing f(�x, y) =

∑m
i=0 fiy

i and g(�x, y) =
∑n

i=0 giy
i, where fi and gi

are polynomials in �x, the Sylvester matrix S for these polynomials is shown
in Figure 2.1. The resultant is non-zero if and only if the two polynomials are

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fm fm−1 · · · f0

fm fm−1 · · · f0

. . . . . . . . . . . .
. . . . . . . . . . . .

fm fm−1 · · · f0

gn gn−1 · · · · · · g0

gn gn−1 · · · · · · g0

. . . . . . . . . . . . . . .
gn gn−1 · · · · · · g0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

FIGURE 2.1: Sylvester matrix.
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algebraically independent. When the polynomials are algebraically indepen-
dent, the resultant yields a new polynomial h(�x), such that if (�x0, y0) is a root
of both f(�x, y) and g(�x, y) then h(�x0) = 0. In this way, we can remove one
variable from two polynomials while retaining information about the roots of
the original polynomials. Given � polynomials in � variables, we can repeat-
edly compute resultants of the polynomials (and with the new polynomials)
until we obtain a single polynomial in one variable. Solving for the root of
that polynomial and back substituting, we can then back track to compute
the entire root that the system of polynomials has in common.

For more information, see von zur Gathen and Gerhard [247, Chapter 6].

2.3 Integer Factorization

The integer factorization problem is to find a non-trivial factor of a given
integer. That is, given an integer n, find an integer 1 < b < n that divides n.
This is a well known and very old problem in number theory. When a prime
factor p of the composite n has certain special properties, there are algorithms
that can exploit these properties and compute that factor efficiently. In general
though, there is no known algorithm that can efficiently solve this problem
for large n.

The best known generic factoring method is Pollard’s general number field
sieve (see [144]), which we will refer to as the NFS. Following Lenstra [142],
we will use

L[n] = e1.923(log n)1/3(log log n)2/3
, (2.1)

as the heuristic expected runtime needed for the NFS to find a factor of
the composite number n. Notice that the expected runtime of the NFS is a
function of only the size of the number being factored. It is independent of
the size of the actual factors. The largest integer factored using the NFS (see
[258]), as of the beginning of 2009, is RSA200, a 200-digit number (665 bits)
which was factored in May 2005.

When one of the prime factors is significantly smaller than n1/2 however,
Lenstra’s [146] elliptic curve method (ECM) for factoring can be substantially
faster than the NFS. Again, following [142], we use

E[n, p] = (log2 n)2e
√

2(log p)1/2(log log p)1/2
, (2.2)

as the heuristic expected runtime needed for the ECM to find a factor p of
the composite number n. Notice that the expected runtime of the ECM is a
function of both the smallest factor and the number being factored, with the
size of the smallest factor dominating the complexity. The largest factor found
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with the ECM (see [258]), as of the beginning of 2009, is a 67 digit (222 bits)
factor of a 214 digit (708 bit) composite number, found in August 2006.

We refer the reader to Crandall and Pomerance [59] for more details about
these factorization methods (and integer factorization in general). For more
information about the NFS see Lenstra and Lenstra [144]. Records for integer
factorization are kept by Zimmerman [258].

2.4 Continued Fractions

It is sometimes useful to consider real numbers in other representations
than the usual decimal expansion. In particular, it often useful to consider the
continued fraction expansion of a number. An expression of the form

a0 +
1

a1 +
1

a2 +
1

. . . +
1
an

,

where a0 is any integer and a1, . . . , an are positive integers, is called a finite
simple continued fraction. For convenience, we will call this a continued
fraction. As a shorthand for this type of expression, a continued fraction is
often expressed as the tuple [a0; a1, . . . , an]. A continued fraction can also be
infinite in length, but we are only concerned with the finite case.

Every rational number p/q can be expressed by a (finite) continued fraction

p

q
= [a0; a1, . . . , an],

where the ai are simply the quotients obtained by computing the greatest
common divisor (gcd) of p and q using the Euclidean algorithm. In particular,
applying the Euclidean algorithm to p and q we obtain

p = a0q + r0

q = a1r0 + r1

r1 = a2r1 + r2

...
rn−2 = anrn−1 + 0.

For a rational number p/q, the number of quotients (the ai values) in its con-
tinued fraction expansion will be O(log(q)) and thus computing the continued
fraction expansion can be done in time polynomial in log(q).
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For 0 ≤ i ≤ n, we define the i-th convergent of the continued fraction
[a0; a1, . . . , an] to be ci = [a0; a1, . . . , ai]. Each convergent ci corresponds to a
rational number pi/qi which can be viewed as an approximation of p/q, where
each successive convergent yields a better approximation.

The main result from the theory of continued fractions that we require is
in the following well known theorem (see for example [96]).

Theorem 2.2 (Continued Fractions). Let α ∈ Q and c, d ∈ Z satisfy∣∣∣α − c

d

∣∣∣ < 1
2d2

.

Then c/d, in lowest terms, is one of the convergents in the continued fraction
expansion of α.

This result, as will be repeatedly demonstrated throughout this work, is
especially useful when trying to solve linear Diophantine equations

ax − by = c,

for the unknowns x and y, where c may or may not be known, but a bound
on the size of c is known. When the unknown x satisfies |x| < |b/(2c)|, notice
that dividing the equation by bx, and rearranging, yields∣∣∣a

b
− y

x

∣∣∣ = ∣∣∣ c

bx

∣∣∣ < 1
2x2

.

From Theorem 2.2, it follows that y/x, in lowest terms, will be one of the
convergents in the continued fraction expansion of a/b. If x and y are relatively
prime, then the correct convergent reveals both x and y (as denominator and
numerator of the convergent). Otherwise, only x/ gcd(x, y) and y/ gcd(x, y)
can be determined. Crucial to the usefulness of this result however, is an
efficient method of detecting the correct convergent. If such a method exists
then one can simply compute all the convergents of a/b and test each one.

For more information about continued fractions see Olds [191] or Hardy
and Wright [96].

2.5 Lattices

The majority of attacks discussed in this work are based on techniques that
rely on lattice basis reduction. In this section we give some basic background
information about lattices and lattice basis reduction.

There are many good references for this material. For a good survey about
lattices and cryptography see Nguyen and Stern [185]. For a good survey
about the LLL algorithm and cryptography see May [165]. For much more
detail about lattices and lattice basis reduction see [46, 91, 152, 158, 147, 14],
and for the geometry of numbers see [40, 92, 221].
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2.5.1 Definitions and Basic Facts

A lattice is a discrete additive subgroup of Rn. More useful for our pur-
poses, given m ≤ n linearly independent vectors b1, . . . , bm ∈ Rn, the set

L = L(b1, . . . , bm) =
{ m∑

i=1

αibi

∣∣ αi ∈ Z
}

, (2.3)

is a lattice. The bi are called the basis vectors of L and B = {b1, . . . , bm} is
called a lattice basis for L. Thus, the lattice generated by a basis B is simply
the set of all integer linear combinations of the basis vectors in B.

It is often useful to represent a lattice L by a basis matrix. If we consider
the basis B to be a matrix whose rows are the basis vectors, instead of simply
a set of basis vectors, then the lattice L generated by B is given by

L = {v | v = aB, a ∈ Zn}.

Alternatively, we can let the basis vectors be the columns in the basis matrix
so that L = {v | v = By, yT ∈ Zm}. In general, we will simply use B to denote
a basis for a lattice and it will be clear from the context if we are referring to
a set or a matrix.

The dimension and volume are two important properties of any lattice.
The dimension (or rank) of a lattice L is equal to the number of vectors making
up the basis and is denoted dim(L). A lattice is said to be full dimensional
(or full rank) when dim(L) = n. When a lattice has dimension dim(L) ≥ 2,
it has infinitely many bases (all having the same number of basis vectors) and
all of the bases are (pairwise) related by a unimodular matrix1. In particular,
given two bases B and B′ for a lattice, there exists a unimodular matrix U
such that B = UB′. The volume (or determinant) of a lattice L, denoted by
vol(L), is the m-dimensional volume of the parallelepiped spanned by any of
its bases. By definition, it is the square root of the determinant of the Gram
matrix G = BBT , for any of its bases B. When the lattice is full dimensional,
it follows that

vol(L) =
(
det(BBT )

)1/2
= |det(B)|,

for any of its basis matrices. That the volume is independent of the choice of
basis follows easily from the fact that any two basis matrices are related by a
unimodular matrix (simply replace B with UB′ in the formula above).

Another important property of lattices, which follows since they are dis-
crete, is that there is always a smallest non-zero vector in every lattice. That
is, there exists a non-zero vector v ∈ L such that, for every non-zero x ∈ L,
the vector satisfies ‖v‖ ≤ ‖x‖. The norm of a smallest vector, called the 1-st
successive minima, is denoted by λ1(L) or simply by λ1. If v is a smallest

1Recall that a unimodular matrix is an integer matrix that is invertible over the integers.
The determinant of a unimodular matrix is ±1.
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vector in a lattice L, it follows that −v is also a smallest vector in a lattice,
therefore, there are always at least two smallest vectors in every lattice. The
following result, which follows from Minkowski’s second theorem, bounds the
size of a smallest vector in terms of the volume of a lattice.

Theorem 2.3 (Minkowski’s Bound). Let L be an m-dimensional lattice. Then
there exists a vector v ∈ L such that

‖v‖ ≤ √
m vol(L)1/m.

We will refer to bound in this theorem as Minkowski’s bound for the
remainder of this work. This result is very useful as it provides a necessary
condition for a vector to be a smallest vector in a lattice, which, as will be
seen in Section 2.6, allows us to construct bounds for certain attacks.

2.5.2 LLL-Reduced Bases

Every lattice L with dimension dim(L) ≥ 2 has an infinite number of bases.
Some bases however, are better than other bases. Of course, the definition of
“better” depends on the particular application but, usually, we are interested
in so-called reduced bases of a lattice. There are several notions of a reduced
basis, but in essence, a reduced basis is simply a basis made up of short
(normed) vectors. The basis vectors in a reduced basis will be ordered in
increasing size (i.e., ‖b1‖ < · · · < ‖bm‖). Lattice basis reduction, or simply
basis reduction, is a process by which a reduced basis is constructed from a
given basis.

The first basis reduction algorithm, due to Gauss, is for 2-dimensional
lattices. Gauss’s basis reduction algorithm transforms any basis of L into a
basis b1, b2 such that b1 is a shortest vector in the lattice and the component
of b2 parallel to b1 has length at most 1/2. The new basis b1, b2 is said to be
Gaussian-reduced. Gauss’s algorithm, which has runtime quadratic in the
input size, is given in Algorithm 2.1.

Algorithm 2.1 Gaussian Reduction
Input: b1, b2

1: repeat
2: if ‖b1‖ > ‖b2‖ then
3: swap b1 and b2

4: end if
5: μ ← 〈b1,b2〉

‖b1‖2

6: b2 ← b2 − μ�b1 (α� = �α + 0.5�)
7: until ‖b1‖ < ‖b2‖

Output: b1, b2 which is Gaussian reduced

An important class of reduced bases, for our purposes, are Lovász-
reduced or, more commonly called, LLL-reduced bases. Let b1, . . . , bm be
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a basis for a lattice L and let b∗1, . . . , b
∗
m be its Gram-Schmidt orthogonaliza-

tion (recall Section 2.2). The basis b1, . . . , bm is said to be Lovász-reduced
or LLL-reduced, if the Gram-Schmidt coefficients satisfy |μi,j | ≤ 1/2 for
1 ≤ j < i ≤ n, and

‖b∗i + μi,i−1b
∗
i−1‖2 ≥ 3

4
‖b∗i−1‖2 for 1 < i ≤ n, (2.4)

or equivalently

‖b∗i ‖2 ≥
(

3
4
− μ2

i,i−1

)
‖b∗i−1‖2 for 1 < i ≤ n. (2.5)

Notice that the vectors b∗i + μi,i−1b
∗
i−1 and b∗i−1 are the projections of bi and

bi−1, respectively, on the orthogonal complement of the span of {b1, . . . , bi−2}.
A very useful property of an LLL-reduced basis, as the following theorem

demonstrates, is that bounds for each of the basis vectors exists and these
bounds depend on only the lattice dimension and volume. The result is for
integer lattices L ⊆ Zn, which simply means each vector in the lattice has
only integer components.

Theorem 2.4. Let b1, . . . , bm be an LLL-reduced basis of a lattice L ⊆ Zn.
Then

‖b1‖ ≤ 2(m−1)/4vol(L)1/m,

and when ‖b1‖ ≥ 2(�−2)/2, the remaining basis vectors satisfy

‖b�‖ ≤ 2(m+�−2)/4vol(L)1/(m−�+1).

The bound on the smallest basis vector was shown by Lenstra, Lenstra and
Lovász [145], while the bounds for the other basis vectors are by Proos [196].
In the unlikely situation that ‖b1‖ < 2(�−2)/2, the bound

‖b�‖ ≤ 2
m(m−1)

4(m−�+1) vol(L)
1

m−�+1 ,

can be used, without restriction, as shown by Blömer and May [21]. It can also
be shown, see Cohen [46, Chapter 2] for example, that the smallest reduced
basis vector is, at worst, not much larger than a smallest vector in the lattice.
In particular, we have the following theorem.

Theorem 2.5. Let b1, . . . , bm be an LLL-reduced basis of a lattice L ⊆ Zn.
For every x ∈ L, x �= 0,

‖b1‖ ≤ 2(m−1)/2‖x‖.

In addition to these nice properties, LLL-reduced bases are an important
class of reduced bases, from a practical point of view, because they can be
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computed (fairly) efficiently. The first algorithm to compute an LLL-reduced
basis, due to Lovász, is called the Lovász reduction algorithm, or more
commonly, the LLL-algorithm [145]. For an m-dimensional lattice with n-
dimensional vectors (L ∈ Zn for example) the LLL-algorithm has runtime
O(nm5B3), where B is a bound on the size (bitlength) of the input basis
vectors. While the runtime is polynomial in the size of the input (the initial
basis for the lattice), the algorithm is inefficient for very large lattices and
when the lattice vectors are very large. The fastest known algorithm that
computes an LLL-reduced basis is Nguyen and Stehlé’s L2-algorithm [182],
which is a floating-point variant of the LLL-algorithm. The runtime of this
algorithm is O(nm4(m + B)B), which offers a significant improvement when
the basis vectors are very large.

2.5.3 The Shortest Vector Problem

Let L be a lattice with dimension dim(L) = m ≥ 2. Given a basis for L, the
shortest vector problem (SVP), as the name suggests, is to find a (non-
zero) vector v ∈ L such that ‖v‖ = λ1(L). That is, to find a shortest vector in
the lattice. There are other algorithmic lattice problems, such as the closest
vector and smallest basis problem, but the smallest vector problem is the most
well known and most studied. The approximate shortest vector problem is to
find a vector v ∈ L such that ‖v‖ = f(m) λ1(L) for some approximation factor
f(m), where m is the dimension of the lattice.

In general, these are hard problems to solve when the lattice dimension m is
large. The best known algorithm for exact SVP, by Ajtai, Kumar and Sivaku-
mar [5], requires randomized 2O(m)-time. For the approximate SVP prob-
lem, there are no known efficient algorithms to approximate SVP to within a
polynomial factor of the dimension of the lattice. There are, however, some
polynomial time algorithms that can approximate it to within a small expo-
nential factor. In particular, from Theorem 2.5, we see that the LLL-algorithm
approximates SVP to within a factor of 2(m−1)/2. While this bound can be
improved, see for example Schnorr [214] or Ajtai, Kumar and Sivakumar [5],
it suffices for our purposes.

All of the lattice-based methods that we consider can be viewed as an
instance of SVP or the approximate SVP. Fortunately, all of the attacks that
require an instance of the SVP to be solved use lattices with a small dimen-
sion. For such instances, the SVP can be solved efficiently. In fact, computing
an LLL-reduced basis usually suffices to find a smallest vector. These attacks
use the methods outlined in the next section (Solving Linear Equations). The
other type of lattice-based attacks that we consider, using Coppersmith’s tech-
niques, only require an LLL-reduced basis to be computed. For these methods,
the results become stronger when a larger lattice is used and so their effec-
tiveness, in practice, depends on the computing capabilities available. Even
so, these methods are observed to perform well with small lattices.
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2.6 Solving Linear Equations

When a linear multivariate equation is known to have a small solution it
is often possible to find that solution using a heuristic lattice-based method
that tries to find a certain smallest vector in a lattice. The method we consider
relies on an unproven assumption about small vectors in a lattice and so the
method is only a heuristic.

We illustrate the general technique with a simple example. Suppose we
wish to find a solution of the linear equation

Ax + By + Cz = w,

for the unknowns x, y, z, w ∈ Z, where it is known that x, z, w are small (the
value of y can be arbitrary). Notice that we can write this equation, along with
the trivial equations x = x and y = y, as a vector-matrix equation �uB = �v,
given by

(x, z, y)

⎡
⎣1 0 A

0 1 C
0 0 B

⎤
⎦ = (x, z, w).

Since the rows in the matrix B are linearly independent, it follows that B
is a basis for some lattice L. Further, since �u = (x, y, z) ∈ Z, the vector
�v = (x, y, w), which we call the target vector, is an integer linear combination
of the rows in the basis matrix. Therefore, the target vector is a vector in the
lattice.

When the target vector �v and its negation −�v are the only smallest vectors
in the lattice, it follows that we can solve the linear equation by simply solving
the smallest vector problem for this lattice (which can be efficiently done for
such a small lattice). Once �v is obtained, we can solve �uB = �v for �u and hence
all of x, y, z, w are revealed. Thus, it is our hope that the target vector �v is a
smallest vector in the lattice L.

There are two criteria we can use to determine if the target vector �v can
even be a candidate to be a smallest vector in L. One criterion, which is
sometimes overlooked, is that the target vector must be smaller than all the
basis vectors in the basis matrix. Letting X = max{|x|, |z|, |w|}, so that the
target vector satisfies ‖�v‖ ≤ √

3X, a first necessary condition for �v to be a
smallest vector is that

X ≤ |A|, |B|, |C|.
A second criterion is that the target vector must satisfy Minkowski’s bound
(Theorem 2.3) for the lattice. In particular, since dim(L) = 3, the target vector
must satisfy

‖�v‖ ≤
√

3vol(L)1/3,
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where vol(L) = | detB| = |B|. Using the bound ‖�v‖ ≤ √
3X, it follows that

X ≤ |B|1/3,

is a sufficient condition for the target vector �v to satisfy Minkowski’s bound.
Typically, if the target vector satisfies Minkowski’s bound, then it also satisfies
the bound from the first criterion. There are some instances, however, where
this does not hold and so both criteria should always be checked (e.g., see
Attack 7.1 in Section 7.1).

When the target vector satisfies both of the criteria, then we know that it
might be a smallest vector in the lattice. At this point, in general, we simply
hope that it is a smallest vector and we hope that we can recover it by solving
the smallest vector problem for the lattice. In particular, we will rely on the
following assumption when trying to solve linear equations in this way.

Assumption 2.6. Let B be a basis for a lattice L and let v ∈ L. If the vector
v is smaller than all of the basis vectors in B and it satisfies Minkowski’s
bound (Theorem 2.3) for the lattice L, then ±v are the only smallest vectors
in L.

When Assumption 2.6 holds for a class of lattices (corresponding to a linear
equation), the bounds from both of the criteria to be a smallest vector can be
used as bounds for the method to solve the linear equation. With the previous
example, suppose that |A| ≈ |B| ≈ |C|, so that a vector satisfying Minkowski’s
bound is also smaller than each of the basis vectors. If Assumption 2.6 holds
for the lattice generated by the basis matrix B, then we expect to be able to
solve any linear equation of the same form (and with the same assumptions)
provided that X ≤ |B|1/3.

It is often the case that the target vector v has unbalanced components.
When this occurs, it is possible to increase the bounds obtained for the
method. For example, in the above example, let X, Z,W be bounds for x, z, w,
respectively, and suppose X > Z, W . That is, we assume that x is the largest
of x, z, w. Notice that we can multiply the vector-matrix equation, from the
right, with the diagonal matrix

D =

⎡
⎣ 1 0 0

0 X/Z 0
0 0 X/W

⎤
⎦ ,

to obtain a new equation �xB′ = �xBD = �vD = �v′ given by

(x, z, y)

⎡
⎣1 0 AX/W

0 X/Z CX/W
0 0 BX/W

⎤
⎦ = (x, zX/Z, wZ/W ).

Here, the new target vector �v′ is a vector in a new lattice L′ generated by
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the rows of the new basis matrix B′. Notice that the new target vector has
balanced components and its size is still given by

‖�v′‖ ≤ (X2 + (ZX/Z)2 + (WZ/W )2
)1/2 ≤

√
3X,

but the volume of the new lattice has been increased to

vol(L′) = | det(B′)| =
BX2

ZW
,

and the size of the basis vectors have also been increased. Therefore, the
bounds on the size of the unknowns can be increased and the target vector
will still satisfy both the criteria to be a smallest vector. This method for
optimizing the bounds can be done whenever the target vector has unbalanced
components. In the presentation of some of the attacks that use this technique,
this optimization will be integrated with the initial lattice construction.

The same ideas can be applied when there are more than one equation that
share some of the same unknowns. In the previous example, suppose that we
also know that x and y satisfy

A′x + C ′z + D = 0,

where D is small. Using both equations we can construct a new vector-matrix
equation

(x, z, y)

⎡
⎣1 A′ A

0 C ′ C
0 0 B

⎤
⎦ = (x,−D,w),

and proceed to derive bounds so that the target vector might be a smallest
vector in the same way as described above. Again, if the components of the
target vector are not balanced we can multiply the equation by an appropriate
diagonal matrix to construct a new lattice and target vector. Since the volume
of the lattice needs to be computed (for Minkowski’s bound), the vector-matrix
equation needs to be constructed so that the determinant of the matrix can be
easily computed. This is typically done by constructing a triangular matrix.

When a nonlinear equation is known to have small solutions, the problem
can be linearized and this method can be used to try to find the solution of
the new problem. For example, an equation of the form

Ax + Bx2 + Cz2 = D,

can be linearized by letting x′ = x, y′ = x2 and z′ = z2 to obtain the new
equation

Ax′ + By′ + Cz′ = D.

As we shall see in Section 2.7, however, there are other methods to solve the
nonlinear equation which can sometimes lead to better (larger) bounds for the
solutions that can be found.
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2.6.1 Modular Linear Equations

The same ideas can be applied to modular linear multivariate equations.
Using the same example as above, suppose now that we wish to find small
solutions of

Ax + By + Cz ≡ w (mod N),

where N is some known integer. Converting this equivalence into the equation

Ax + By + Cz = w + nN,

where n is some (unknown) integer, we have simply created a new linear
equation (over the integers) with one new unknown. Thus, we simply apply
the same ideas from above to this new equation. In particular, we can construct
the vector-matrix equation

(x, y, z,−n)

⎡
⎢⎢⎣

1 0 0 A
0 1 0 B
0 0 1 C
0 0 0 N

⎤
⎥⎥⎦ = (x, y, z, w),

and proceed to try and find (x, y, z, w) as a smallest vector in the lattice
generated by the rows of the matrix.

In fact, the method described here can be used to justify a well known gen-
eral (folklore) result about finding small solutions of modular linear equations.
Consider the general modular equation

a1x1 + · · · + anxn ≡ 0 (mod N),

where all of the ai and N are known and let X1, . . . , Xn > 0 be integers
such that |x1| ≤ X1, . . . , |xn| ≤ Xn. The folklore result is that the solution
x1, . . . , xn can be computed whenever

n∏
i=1

Xi ≤ N.

While the result has been known and used for many years, a justification for
it has only recently been given by Herrmann and May [101, Appendix A]. We
give an overview of their result below.

Assuming that gcd(an, N) = 1, Herrmann and May first convert the gen-
eral modular equation into an equivalent modular equation by multiplying
through by −a−1

n mod N to obtain

b1x1 + · · · + bn−1xn−1 ≡ xn (mod N),

where bi = −a−1
n ai mod N , for each i = 1, . . . , n. The congruence is then

converted into the equation

b1n1 + · · · + bn−1xn−1 = −xn − nN,
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where n is some integer. From this equation, the vector-matrix equation

(x1, . . . , xn−1, n)

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 b1

0 1 0 · · · 0 b2

...
. . .

...
...

0 0 0 · · · 1 bn−1

0 0 0 · · · 0 N

⎤
⎥⎥⎥⎥⎥⎦ = (x1, . . . , xn−1, xn),

can be constructed, which is then multiplied by the diagonal matrix

D =

⎡
⎢⎢⎢⎢⎢⎣

N/X1 0 0 · · · 0
0 N/X2 0
...

. . .
...

0 N/Xn−1 0
0 0 · · · 0 N/Xn

⎤
⎥⎥⎥⎥⎥⎦ .

In Herrmann and May’s presentation, both steps are combined together. From
this construction, it follows that the target vector �v′ is given by

�v′ =
(

x1N

X1
, . . . ,

xn−1N

Xn−1
,
xnN

Xn

)
,

with each component bound by N . Thus,

‖�v′‖ ≤ √
nN.

The volume of the lattice L′ is simply the product of the diagonal entries of
both of the matrices given above, and is given by

vol(L′) = N
n∏

i=1

N

Xi
= Nn+1

n∏
i=1

1
Xi

.

Since the dimension of the lattice is n, it follows that a sufficient condition for
the target vector to satisfy Minkowski’s bound (Theorem 2.3) is given by

√
nN ≤ √

n

(
Nn+1

n∏
i=1

1
Xi

)1/n

,

or, more simply by
∏n

i=1 Xi ≤ N , which is the desired result.
Notice that, by construction, the other criterion for the target vector to

be a smallest vector is also expected to be satisfied. Since the inverse a−1
n is

expected, with high probability, to be about the same size as N , it follows
that each of the basis vectors will be greater than N . Also, the size of each
basis vector is increased when Xn is significantly smaller than N . Relabeling
the coefficients and variables, we can always choose an Xn so that all of
the basis vectors are larger than

√
nN . Therefore, when

∏n
i=1 Xi ≤ N and

Assumption 2.6 holds for this lattice, it is expected that the solution can be
found.
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2.7 Coppersmith’s Methods

For nonlinear equations there are some provable results for finding small
solutions of certain types of equations. In particular, small roots of bivariate
polynomials over Z and small roots of univariate polynomials over ZN , for
some N with unknown factorization, can be found with the results of Cop-
persmith [51, 50, 52].

Both of these methods have also been extended to general multivariate
polynomials. The extensions can be used to find small roots of multivariate
polynomials over Z or over ZN . In general, however, these extensions rely on
unproven assumptions and so are only heuristics. Nonetheless, the methods
work well in practice. In the remainder of this work, we use Coppersmith’s
techniques or Coppersmith’s methods to describe Coppersmith’s original
results as well all of the heuristic extensions of them.

To illustrate the basic ideas used for the main results of this section, we
first consider the univariate modular case. Let N be an integer with unknown
factorization and consider the monic degree d polynomial

fN (x) = xd + ad−1 xd−1 + · · · + a2 x2 + a1 x + a0 ∈ Z[x].

The goal is to efficiently find all |x0| < X satisfying

fN (x0) ≡ 0 (mod N),

for as large a bound X as possible.
In some instances, we can efficiently compute small solutions of the mod-

ular equation by simply solving the integer equation fN (x) = 0. For example,
when fN (x) = xd − a0, we can efficiently find all solutions up the bound
X = N1/d. This follows since |x0| < X = N1/d can be found by simply com-
puting the d-th roots of a0 over the integers. More generally, if each coefficient
of fN (x) satisfies

|ai| <
N (1−i/d)

(d + 1)
,

then all solutions |x0| < X = N1/d can be found by solving fN (x) = 0 over
the integers, since N divides fN (x0) and

|fN (x0)| ≤
d∑

i=0

|ai| |xi
0| <

d∑
i=0

N (1−i/d)

d + 1
N i/d = N.

This is quite restrictive, though. A more useful sufficient condition so that
solutions of fN (x) ≡ 0 (mod N) are also solutions of fN (x) = 0 is given in
the following result by Howgrave-Graham [111].
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Theorem 2.7. Let h(x) ∈ Z[x] be the sum of at most ω monomials. For any
X > 0, if |x0| < X, h(x0) ≡ 0 (mod N), and ‖h(xX)‖ < 1√

ω
N , then x0 is a

root of h(x) over Z. That is, h(x0) = 0.

In general, most polynomials will not have coefficients small enough to
satisfy the condition in Theorem 2.7 either. However, it is sometimes possible
to construct a new polynomial, with the same roots, that does have sufficiently
small coefficients. Using the polynomial fN (x), we can construct a lattice
whose vectors all correspond to the coefficient vector of a polynomial that has
the root x0 modulo N . Computing an LLL-reduced basis for this lattice, the
smallest basis vector in the reduced basis will correspond to the coefficient
vector of some polynomial with root x0 modulo N , because all vectors in
the lattice have this property, and will also have small coefficients, because
the vector itself is small. If the coefficients of this small (normed) polynomial
are small enough to satisfy Theorem 2.7, we can then compute x0 by solving
f(x) = 0 over the integers. This can be done efficiently using standard root
finding algorithms of univariate polynomials over Z (e.g., see the methods
discussed in [247, Chapter 15]).

Essentially, this is the framework that we will follow for all the lattice-
based methods for finding small solutions of polynomials (whether over Z or
over ZN ).

2.7.1 Small Solutions of Modular Polynomials

We again begin by considering univariate modular polynomials. Let N be
a positive integer with unknown factorization and let fN (x) ∈ Z[x] be a monic
polynomial with degree d. The goal is to efficiently find all |x0| < X satisfying

fN (x0) ≡ 0 (mod N),

for as large a bound X as possible.
Early work by H̊astad [97, 98] and Vallée, Girault and Toffin [242, 87],

showed that lattice-based methods can efficiently find solutions |x0| < X for
a bound as large as

X = N
2

d(d+1)−ε,

where ε > 0 is a function of the degree d. Essentially, the method uses lattice
basis reduction to find a polynomial h(x), with small coefficients, that is a
constant multiple of fN (x) modulo N . The basis vectors used to construct
the lattice are the coefficient vectors of the d + 1 polynomials

fi(xX) =

{
N(xX)i for 0 ≤ i ≤ d − 1,

fN (xX) for i = d.

Notice that in order to use Theorem 2.7, we use the coefficient vectors of the
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polynomials evaluated at xX. For a degree d polynomial

fN (x) = a0 + a1x + . . . ad−1x
d−1 + xd,

we use the basis matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N
NX

NX2

. . .
NXd−1

a0 a1X a2X
2 · · · ad−1X

d−1 Xd

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Notice that any element in the lattice L (generated by B) can be generated
as

(−c0,−c1, . . . ,−cd−1, c)B,

which is given by(
(ca0 − c0N), (ca1 − c1N)X, . . . , (cad−1 − cd−1N)Xd−1, cXd

)
.

This vector is the coefficient vector of some polynomial h(x) given by

h(x) = (ca0 − c0N) + (ca1 − c1N)x + · · · + (cad−1 − cd−1N)xd−1 + cxd,

when evaluated at xX. In particular, notice that

h(x) ≡ cfN (x) (mod N),

for any choice of the ci and c. Therefore, all roots of fN (x) modulo N are also
roots of h(x) modulo N . Computing a small vector in this lattice corresponds
to simultaneously minimizing each of the coefficient of the polynomial h(x).
Computing an LLL-reduced basis for this lattice allows us to compute a bound
on the size of the smallest vector (from Theorem 2.4) in terms of the volume
of the lattice. This also corresponds to the bound of some polynomial h(xX)
(whose coefficient vector is the smallest reduced basis vector). The bound

X = N2/(d(d+1))−ε,

which we will call an enabling condition, for the method, is obtained by forcing
the polynomial h(xX) to satisfy Theorem 2.7. In particular, from Theorem 2.4,
we have

‖h(xX)‖ ≤ 2d/4vol(L)1/(d+1),

and the volume of the lattice is given by

vol(L) = | det(B)| = NdX(d2+d)/2.



36 Cryptanalysis of RSA and Its Variants

For this polynomial to satisfy Howgrave-Graham’s bound, it must be smaller
than N/

√
d + 1. Thus, a sufficient condition is given by

2d/4Nd/(d+1)X(d2+d)/(2(d+1)) ≤ (d + 1)−1/2N,

or more simply

X(d2+d)/2 ≤ γN,

where γ = 2d(d+1)/4(d + 1)−(d1)/2. Solving for X we then have

X ≤ N2/(d(d+1)−ε,

where ε > 0 accounts for γ.
This bound was later improved by Coppersmith [51, 52], who showed that

roots smaller than N1/d−ε could be computed. This improvement is the re-
sult of considering polynomial combinations of fN (x) modulo Nm for some
integer m instead of only considering constant multiples of fN (x) modulo N .
We outline Coppersmith’s method, using the simplified alternate approach of
Howgrave-Graham [111], and then give the main result below.

Let fN (x) be a polynomial with a root x0 modulo N . For some (fixed)
integer m ≥ 1, we consider a set of polynomials

fi,j(x) = xifN (x)jNm−j ,

for various values of i, j ≥ 0. Since x0 satisfies fN (x0) ≡ 0 (mod N), it follows
that x0 also satisfies fi,j(x0) ≡ 0 (mod Nm) for any i, j ≥ 0 and m ≥ 1. With
care, we select ω of these polynomials (i.e., ω pairs of (i, j)) and use the
coefficient vectors of each of the fi,j(xX) as a basis vector for a lattice L.
Notice again that we use the coefficient vectors of the polynomials evaluated
at xX so that Theorem 2.7 can be used. With a careful choice of (i, j) pairs,
the basis matrix B is a triangular ω × ω matrix and so the lattice L is an
ω-dimensional full rank integer lattice.

Computing an LLL-reduced basis for this lattice, it follows, from Theo-
rem 2.4, that the smallest reduced basis vector corresponds to the coefficient
vector of some polynomial h(xX), having x0 as a root modulo N , and satis-
fying

‖h(xX)‖ ≤ 2(ω−1)/4vol(L)1/ω. (2.6)

Since the lattice is full rank, the volume is simply vol(L) = | det(B)|, and this is
easily computable since the basis matrix is triangular. Now, in order to apply
the result from Theorem 2.7, where we use Nm instead N , the polynomial
h(x) must also satisfy

‖h(xX)‖ <
Nm

√
ω

. (2.7)
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Combining (2.6) and (2.7), it then follows that

2(ω−1)/4vol(L)1/ω <
Nm

√
ω

,

is a sufficient condition for x0 to be a root of h(x) over the integers. We can
also write this sufficient condition as

vol(L) ≤ γNmω,

where γ = 2−ω(ω−1)/4ω−ω/2. This inequality (or the equivalent one before
it) will be referred to as the enabling condition for the method. When the
enabling condition is satisfied, all roots |x0| < X of fN (x) modulo N are also
roots of h(x) over the integers. These roots can then be found with standard
root finding techniques. With a proper choice of basis vectors, it can be shown
that X < N1/d−ε implies that the enabling condition is satisfied.

We restate Coppersmith’s result for univariate modular polynomials, in its
most general form as given by May [165, Theorem 1], in the following theorem.

Theorem 2.8. Let N be an integer with unknown factorization which has a
divisor b ≥ Nβ. Let fb(x) be a monic univariate polynomial of degree d and
let c > 1 be a constant. All x0 satisfying fb(x0) ≡ 0 (mod b) and

|x0| ≤ cNβ2/d,

can be found in time polynomial in log(N), c and the number of roots.

When a sufficiently good approximation of any multiple of a divisor of N is
known, this general form of Coppersmith’s result (Theorem 2.8) immediately
yields an efficient factoring method. Let b be a divisor of N and let b̃ be a
known approximation of some multiple of b, say kb, with additive error x0.
That is, kb = b̃ + x0. It follows that

f(x) = b̃ + x,

is a monic degree d = 1 polynomial that has root x0 modulo b. Further, if br

is also a divisor of N , for some integer r > 1, it follows that

fr(x) = (b̃ + x)r,

is a monic degree d = r polynomial with root x0 modulo br. Using these poly-
nomials, Theorem 2.8 immediately implies the following result, which comes
from Boneh, Durfee and Howgrave-Graham [32] and May [164].

Corollary 2.9. Let N be integer with unknown factorization which has a
factor b ≥ Nβ. Given an approximation for b̃ for kb, where k is any integer
that is not a multiple of N/b, if |kb−b̃| < Nβ2

then the factor b can be computed
in time polynomial in n. Further, if br divides N , k is not a multiple of N/br

and |kb − b̃| < Nrβ2
then the factor b can be computed in time polynomial in

log(N).
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Coppersmith’s method for univariate modular polynomials is easily ex-
tended to multivariate modular polynomials. For the multivariate case we need
a generalized version of Howgrave-Graham’s result (Theorem 2.7), which we
state as follows.

Theorem 2.10. Let h(x1, . . . , xn) ∈ Z[x1, . . . , xn] be the sum of at most ω
monomials and let X1, . . . , Xn > 0. For any (y1, . . . , yn) ∈ Zn that satisfies
|yi| < Xi, for 1 ≤ i ≤ n, if h(y1, . . . , yn) ≡ 0 (mod M) and

‖h(x1X1, . . . , xnXn)‖ < 1√
ω
M,

then (y1, . . . , yn) is a root of h(x1, . . . , xn) over Z. That is, h(y1, . . . , yn) = 0.

In the remainder of this work, we will often say that a polynomial (and its
associated roots) satisfies Howgrave-Graham’s condition, or Howgrave-
Graham’s bound, when the conditions of Theorem 2.10 are satisfied.

The approach for multivariate polynomials follows closely to the univariate
approach. Essentially, if the polynomial has n variables, we need to find n small
polynomials that satisfy Howgrave-Graham’s condition (Theorem 2.10). The
small roots are then found by solving the system of polynomial equations,
using resultants for example.

Let fN (x1, . . . , xn) ∈ Z[x1, . . . , xn] be polynomial with root (y1, . . . , yn)
modulo N . For some (fixed) integer m ≥ 1, consider the set of polynomials

fi1,...,in,j(x1, . . . , xn) = x1
i1x2

i2 · · ·xn
infN (x1, . . . , xn)jNm−j ,

for carefully chosen i1, . . . , in, j ≥ 0. In this case, the difficulty in choosing the
best i1, . . . , in, j increases with the number of variables and the complexity of
the polynomial fN . Just as in the univariate case, we construct a ω × ω basis
matrix using the coefficient vectors of the fi1,...,in,j(x1, . . . , xn), evaluated at
(x1X1, . . . , xnXn), for some lattice L. The basis vectors are generally chosen
so that the basis matrix is triangular, so that its determinant can be easily
computed. Notice that every vector in the lattice is the coefficient vector of
some polynomial that has root (y1, . . . , yn) modulo Nm. Computing an LLL-
reduced basis for the lattice, let h1, . . . , hn be polynomials corresponding the n
smallest basis vectors. It follows that the these polynomials are linearly inde-
pendent and each have the root (y1, . . . , yn) modulo Nm. From Theorem 2.4,
we know that the largest of these polynomials has size

‖hn(x1X1, . . . , xnXn)‖ ≤ 2(ω+n−2)/4vol(L)1/(ω−n+1).

A sufficient condition for this largest polynomial, and hence all of the polyno-
mials, to have the root (y1, . . . , yn) over the integers (Theorem 2.10) is then
given by

vol(L) ≤ γNm(ω−n+1),

where γ is a constant that depends on ω and n. This is the enabling condition
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for the method. Computing the volume of the lattice (determinant of the basis
matrix) will then yield another enabling condition that gives an explicit bound
for the Xi values. Thus, when the enabling condition is satisfied we know that
we can compute n linearly independent polynomials that each have the root
(y1, . . . , yn) over the integers.

Up to this point, everything is a natural generalization of the univariate
case. In the multivariate case, however, it is not always possible to compute
the root (y1, . . . , yn) given the n polynomials h1, . . . , hn. If the polynomi-
als are algebraically independent2, then the system of equations (defined by
h1 = 0, . . . , hn = 0) can be solved and (y1, . . . , yn) can be determined. In
particular, we can solve for (y1, . . . , yn) using repeated resultant computa-
tions to remove variables until we reach a univariate polynomial. Solving this
univariate polynomial reveals one of the yi which can be back substituted to
create a new univariate polynomial, yielding another yi. We continue with this
back-tracking until the entire root (y1, . . . , yn) is recovered (for example, see
[102, §3.1.3] for more details). When the polynomials have four or more vari-
ables, other techniques for solving systems of equations are preferable since
the resultant technique becomes too costly. Any method for solving systems
of nonlinear equations can be used. For example, Gröbner basis techniques
can be used (see Jochemsz and May [120]).

If the polynomials are not algebraically independent the root finding tech-
niques will not work. For example, consider the two polynomials

h1(x1, x2) = (x1 − y1)(x2 − y2)
h2(x1, x2) = x1(x1 − y1)(x2 − y2).

While the polynomials are linearly independent, neither adds any information
about the root (y1, y2) that the other does not reveal. There are, however, some
instances in which some information can still be obtained. For example, in the
simple example above, if it is observed that the polynomials are always of this
form, finding h1(x1, x2) will reveal the root (y1, y2) simply by its structure. For
a practical example of this see Blömer and May [20]. In other instances, when
the n polynomials are algebraically dependent, it may be possible to use some
of the other reduced basis vectors, that are sufficiently small, to construct a
set of n algebraically independent polynomials. For a practical example of this
see Hinek [104].

2.7.1.1 Known Results for Modular Polynomials

Here we collect all of the known general results for finding small roots of
multivariate polynomials. First we need some definitions to describe certain
classes of polynomials (see Jochemsz and May [119]).

Let f(x1, . . . , xn) be a polynomial where the degree of xi is λiD, for some

2Recall that two polynomials f1 and f2 are algebraically independent if and only if their
only common factors are constants (i.e., gcd(h1, h2) = constant).
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fixed D, for 1 ≤ i ≤ n. We say that f(x1, . . . , xn) is a generalized rectangle
with parameters D and λi, for 1 ≤ i ≤ n.

Let f(x1, . . . , xn) be a polynomial with monomials xk1
1 xk2

2 · · ·xkn
n for k1 =

0, . . . , λ1D, k2 = 0, . . . , λ2D − λ2
λ1

k1, . . . , kn = 0, . . . , λnD −∑n−1
i=1

λn

λi
ki, for

some fixed D. We say that f(x1, . . . , xn) is a generalized lower triangle
with parameters D, λi and ki, for 1 ≤ i ≤ n.

With these definitions, we now list all the known extensions of Copper-
smith’s univariate modular methods in the following theorem.

Theorem 2.11. For every ε > 0 there exists an N0 such that for every
N > N0 the following holds: Let N integer with unknown factorization and
let fN (x1, . . . , xn) be one of the polynomials listed below. Let X1, . . . , Xn > 0
satisfy the enabling condition for the chosen polynomial fN (x1, . . . , xn). A
set of n linearly independent polynomials, g1, . . . , gn ∈ Z[x1, . . . , xn], can be
constructed in time polynomial in log(N), such that gi(y1, . . . , yn) = 0, for
each 1 ≤ i ≤ n, for each (y1, . . . , yn) satisfying fN (y1, . . . , yn) ≡ 0 (mod N)
and |yi| < Xi for each i = 1, . . . , n.

1. [Boneh and Durfee [28]]: fN (x1, x2) = a0 +a1x2 +a2x2x2, with enabling
condition (for any τ > 0)

X1
2+3τX2

1+3τ+3τ2
< N1+3τ−ε. (2.8)

2. [Blömer and May [21]]: fN (x1, x2, x3) = a0 +a1x1 +a2x2 +a3x2x3, with
enabling condition (for any τ ≥ 0)

X1
1+4τX2

2+4τX3
1+4τ+6τ2

< N1+4τ−ε. (2.9)

3. [Jochemsz and May [119]]: fN (x1, . . . , xn) is a generalized rectangle with
parameters D and λi, for 1 ≤ i ≤ n, with enabling condition

n∏
i=1

Xi
λi < N

2
(n+1)D

−ε. (2.10)

4. [Jochemsz and May [119]]: fN (x1, . . . , xn) is a generalized lower triangle
with parameters D, λi and ki, for 1 ≤ i ≤ n, with enabling condition

n∏
i=1

Xi
λi < N

1
D −ε. (2.11)

2.7.2 Small Solutions of Integer Polynomials

The first known results for finding small integer solutions of multivariate
polynomials was by Coppersmith [50, 52], for the bivariate case. We restate
his main result in the following theorem.
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Theorem 2.12. Let f(x, y) =
∑

i,j ai,jx
iyj be an irreducible polynomial in

two variables over Z. Let X, Y > 0 and let W = ‖f(xX, yX)‖∞. If f(x, y)
has maximum degree d in each variable separately and

XY < W 2/(3d),

or if f(x, y) has total degree d and

XY < W 1/d,

then all roots of (x0, y0) of f(x, y) such that |x0| < X and |y0| < Y can be
found in time polynomial in log(W ), 2d and in the number of such roots.

We give an outline of the method, as simplified by Coron [54], below. This
approach, while obtaining the same bounds, is less efficient than Copper-
smith’s original method. A more recent simplification by Coron [55], achieves
both the same bound and complexity as the original result, but the simplicity
of the first (simplification) lends itself well to describing the basic idea of the
method and its extensions to the general multivariate case.

Let f(x, y) ∈ Z[x, y] be an irreducible polynomial with root (x0, y0) over
the integers, satisfying |x0| < X and |y0| < Y for some bounds X and Y .
Also, let W = ‖f(xX, yY )‖∞. The problem is first converted to a bivariate
modular equation. Without loss of generality, we will assume that f(0, 0) �= 0
and gcd(f(0, 0), XY ) = 1. For some positive integer k, we define the modulus

N = u(XY )k,

where

u = W + ((1 − W ) mod |f(0, 0)|),
and compute the polynomial

g(x, y) = a−1
0,0 f(x, y) mod N

= 1 +
∑

(i,j)�=(0,0)

bi,jx
iyj .

We have now reduced the problem to multivariate modular case and can
use the method described above. In this case, however, we only need one of
the reduced basis vectors. Let h(x, y) be the polynomial corresponding to the
smallest reduced basis vector. Using an extension of a result by Mignotte [172,
Theorem 2], Coron shows that h(x, y) and the original polynomial f(x, y) are
algebraically independent. When the enabling condition is satisfied, we can
solve the system of equations

f(x, y) = 0
h(x, y) = 0,
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for the root (x0, y0). Since the polynomial h(x, y) is guaranteed to be alge-
braically independent with f(x, y), the result does not rely on any assump-
tions. Thus, the result is provable.

Coron’s simplification of Coppersmith’s bivariate polynomial method is
easily extended to multivariate polynomials in general (e.g., see [75], [119] and
[120]). Like the extensions of the univariate modular case, however, these ex-
tensions are only a heuristic. Given a multivariate polynomial f(x1, . . . , xn) ∈
Z[x1, . . . , nn] with solution (y1, . . . , yn) over the integers, we convert the prob-
lem to a modular multivariate polynomial problem which is solved using the
techniques of the previous section. Using the original polynomial f and the
smallest n− 1 polynomials, g1, . . . , gn−1, obtained from the reduced basis, we
try to solve the system of n equations in n unknowns. If all n polynomials
are algebraically independent, we can use resultant computations or Gröbner
basis methods to compute the solution (y1, . . . , yn). Just as Coron showed
that the original polynomial f is algebraically independent to the polynomial
corresponding to the smallest reduced basis vector, it is easily shown that f
is also algebraically independent to each of g1, . . . , gn−1. This was shown by
Hinek and Stinson [110].

2.7.2.1 Known Results for Integer Polynomials

Here we collect all the known, general, results for extensions of Cop-
persmith’s bivariate integer polynomial method. As with the modular case,
we first give some definitions to describe certain classes of polynomials (see
Blömer and May [23]).

Let f(x1, x2) be a polynomial with monomials xk1
1 xk2

2 for k1 = 0, . . . , D
and k2 = 0, . . . , λk1, for some integer D. We say that f(x1, x2) is an upper
triangle with parameters D and λ.

Let f(x1, x2) be a polynomial with monomials xk1
1 xk2

2 for k2 = 0, . . . , D
and k1 = 0, . . . , γD + λ(D − k1), for some integer D. We say that f(x1, x2) is
an extended rectangle with parameters D, γ and λ.

With these definitions, we now collect all the known results for exten-
sions to Coppersmith’s bivariate integer polynomial methods in the following
theorem.

Theorem 2.13. For every ε > 0 there exists an W0 such that for every
W > W0 the following holds: Let f(x1, . . . , xn) be one of the polynomials
listed below. Let X1, . . . , Xn > 0 satisfy the enabling condition for the cho-
sen polynomial f(x1, . . . , xn), and let W = ‖f(x1X1, . . . , xnXn)‖∞. A set of
n−1 linearly independent polynomials, g1, . . . , gn ∈ Z[x1, . . . , xn], can be con-
structed in time polynomial in log(W ), such that gi(y1, . . . , yn) = 0, for each
1 ≤ i ≤ n, for each (y1, . . . , yn) satisfying f(y1, . . . , yn) = 0 and |yi| < Xi for
each i = 1, . . . , n.

1. [Blömer & May [23]]: f(x1, x2) is an upper triangle with parameters D
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and λ, with enabling condition

X1
(λ+τ)2X2

2(λ+τ) < W
(λ+2τ)

D −ε. (2.12)

2. [Blömer & May [23]]: f(x1, x2) is an extended rectangle with parameters
D, γ and λ, with enabling condition

X1
λ2+3γλ+2τλ+4τγ+τ2+3γ2

X2
λ+3γ+2τ < W

(λ+2γ+2τ)
D −ε. (2.13)

3. [Ernst, Jochemsz, May & de Weger [75]]:
f(x1, x2, x3) = a0 + a1x1 + a2x2 + a3x2x3, with enabling condition

X1
1+3τX2

2+3τX3
1+3τ+3τ2

< W 1+3τ−ε. (2.14)

4. [Ernst, Jochemsz, May & de Weger [75]]:
f(x1, x2, x3) = a0+a1x1+a2x2+a3x3+a4x2x3, with enabling condition

X1
2+3τX2

3+3τX3
3+6τ+3τ2

< W 2+3τ−ε. (2.15)

5. [Jochemsz & May [120]]:
f(x1, x2, x3) = a0+a1x1+a2x1

2+a3x2+a4x3+a5x1x2+a6x1x3+a7x2x3,
with enabling condition

X1
7+9τ+3τ2

X2
5+ 9

2 τX3
5+ 9

2 τ < W 3+3τ−ε. (2.16)

6. [Jochemsz & May [119]]: f(x1, . . . , xn) is a generalized rectangle with
parameters D and λi for 0 ≤ i ≤ n, with enabling condition

n∏
i=1

Xi
λi < W

2
(n+1)D

−ε. (2.17)

7. [Jochemsz & May [119]]: f(x1, . . . , xn) is a generalized lower triangle
with parameters D, λi and ki for 0 ≤ i ≤ n, with enabling condition

n∏
i=1

Xi
λi < N

1
D −ε. (2.18)

2.7.3 Computing and Improving the Bounds

In all of Coppersmith’s methods there is an enabling condition to en-
sure that the vectors from the LLL-reduced basis are small enough to satisfy
Howgrave-Graham’s bound. In particular, for some fixed parameter m, when
the lattice has dimension ω and � small vectors (polynomials) are needed, a
general enabling condition is given by

vol(L) ≤ γNm(ω−�+1),
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for some γ that does not depend on N . This enabling condition follows from
Theorems 2.4 and 2.10. More refined enabling conditions, such as in Theorems
2.11 and 2.13, can be obtained by computing the volume of the lattice and
substituting the bounds for the individual variables (the Xi). In order to
compute the volume of the lattice, the basis vectors for the B should be chosen
so that det(B) is easily computed. In general, the basis vectors should be
chosen so that the basis matrix is triangular.

In addition to choosing basis vectors that result in a triangular basis ma-
trix, they should also be chosen in a way that optimizes the more refined
enabling condition. That is, they should be chosen so that the largest possible
roots can be found. This optimization problem is, generally, a non-trivial task.
There are, however, some general strategies for constructing good bases. In
2005, Blömer and May [23] presented a method of computing optimal bounds
for finding small integer roots of any bivariate polynomial. In 2006, Jochemsz
and May [119] presented a heuristic strategy that applies to all multivariate
polynomials having either modular or integer roots. Their strategy can be
used to compute a bound (which is not necessarily optimal) and it can be
extended in some cases to compute better bounds. In order to compute opti-
mal bounds, except for the integer bivariate case, the basis selection for each
type of polynomial needs to be optimized. We illustrate this process in the
justification of Attack 5.3, Boneh and Durfee’s small private exponent attack
on RSA. For more details for individual polynomials, we refer the reader to
the original works.

Sometimes the bounds obtained can be further improved by considering
sub-lattices For example, if it is observed that some of the basis vectors are
never used in the integer linear combination of the small vectors in the LLL-
reduced basis, then it is sometimes possible to compute a bound on the volume
of the sub-lattice in which the vectors reside in. In general, it is not possible
to actually compute the volume of the sub-lattice (since it is not a full di-
mensional lattice) but a bound can sometimes be obtained. We illustrate this
process in the justification of Attack 5.4, Boneh and Durfee’s small private
exponent attack on RSA. For more detail of using sub-lattices see Boneh and
Durfee [28, 29] and Blömer and May [20]. For another example of computing
bounds for a lattice that is not full dimensional, see Howgrave-Graham [113].

It also possible to improve the bounds when some additional side infor-
mation is available. For example, suppose we are looking for a (x0, y0, z0) of
a trivariate polynomial f(x, y, z). If it also known that a = x0y0, then ev-
ery instance of xy in the polynomials in the basis can be replaced with a. In
this way, the complexity of the polynomials (vectors) in the basis is reduced.
Instead of using polynomials of the form

xiyjzkf(x, y, x)�Nm−�,
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for the basis construction, only polynomials of the form

xizkf(x, y, x)�Nm−�

yjzkf(x, y, x)�Nm−�,

need be considered. These ideas were first used by Boneh and Durfee [28, 29].
Other examples of using these ideas can be found by Durfee and Nguyen [71],
Kunihiro and Kurosawa [136, 137] and Itoh et al. [116].

It should be noted that the bounds obtained in Coppersmith’s methods are
asymptotic bounds. They are obtained in limit of large N (or W ) and large
lattice dimension. The simple enabling conditions in Theorems 2.11 and 2.13
can only be obtained in these limits, where small order terms can be ignored.
In practice of course, the methods are used with finite N (or W ) and finite
lattices. For these cases, we can numerically compute enabling conditions for
specific instances without ignoring any of the lower order terms or constants.
These bound are, of course, smaller than the asymptotic bounds, but may give
some indication of how well the method is expected to work in practice. In
fact, it is often the case that the method works better than the specific bounds
predict. This is because the bounds are constructed using Theorem 2.4, which
is, in practice, often too pessimistic. That is, the basis computed from the LLL-
algorithm (or L2-algorithm) has reduced basis vectors that are much smaller
than the upper bounds predicted for them. For more detail about the size
of reduced bases in practice, see Gama and Nguyen [84]. While the methods
can outperform the bounds computed for a specific instance they still cannot
achieve the asymptotic bounds in practice.

2.7.4 Assumptions for Coppersmith’s Methods

When applying Coppersmith’s methods there are two assumptions that
may be needed to ensure that the methods are efficient and actually work.
For a method (or algorithm) to be efficient, we require that the expected
runtime is at most polynomial in the size of the input. The first assumption is
sometimes made when using any of Coppersmith’s methods, whether it is one
of the original provable results or the heuristic extensions, while the second
assumption is only needed for the heuristic results.

The first assumption is that the polynomial whose small roots we are trying
to find only has one small root. In order for any of the methods have an overall
complexity that is polynomial, in the size of the input, the number of solutions
needs to be at most polynomial, in the size of the input, as well. This follows
since the final root extraction algorithm used will have complexity that is
(at least) linear in the number of roots. If it cannot be proven that there is
only one solution (or at most polynomially many solutions), then any attack
using using Coppersmith’s techniques, even the provable results, can only be
a heuristic attack. In some cases it is possible to show that there can only
be one small solution. In the remaining cases, we make use of the following
assumption.
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Assumption 2.14. The polynomials with a known small solution, either over
Z or over ZN , have only one small solution.

We could relax the assumption to allow for polynomially many solutions,
but, in practice, for cryptographic applications, it is most often the case that
there is only one solution. Thus, this assumption will suffice.

When applying the heuristic extensions of Coppersmith’s methods we also
need to make the assumption that the polynomials are algebraically indepen-
dent. This is, in general, a necessary requirement so that the root can be
extracted from the system of (polynomial) equations. There are some partic-
ular cases in which it is not needed (see Blömer and May [20] for example),
but these are not (known to be) typical cases. Thus, whenever using the ex-
tensions of Coppersmith’s methods, Theorems 2.11 and 2.13, we make use of
the following assumption.

Assumption 2.15. The polynomials obtained from the LLL-reduced basis
vectors are all algebraically independent.

In practice, the assumption has been observed to hold quite well. There
are some cases when the assumption does not hold (e.g., see [20] and [104]),
but in the vast majority of reported experiments it holds quite well.

2.8 On Attacks and Proofs

Throughout the reminder of this work we consider attacks on RSA and
it variants. Any result that can be used to break an instance of RSA (or a
variant) is considered an attack. Some attacks can be rigorously proven and
some are only heuristics. We explicitly make a distinction between these types
of attacks by labeling a provable attack as a Theorem, Lemma or Corollary
and labeling a heuristic attack as an Attack. Of course, Theorems and Attacks
are each also an attack, in the sense that the result is an attack on RSA or
one of its variants.

For many Theorems, we provide a proof of the result. Since Attacks, by
our naming convention, cannot be proven, we give a justification for the result.
For example, results based on Theorem 2.2 (continued fractions) are generally
theorems, while results based on the multivariate extension of Coppersmith’s
methods are only attacks. We hope that this distinction will help in the un-
derstanding of an attack’s capabilities.
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2.9 Additional Notes

§2.5 An excellent resource for information about the practical aspects lat-
tice basis reduction can be found by reading Nguyen and his coauthors. For
example, see Gama and Nguyen [84, 83], Nguyen and Vidick [186], Nguyen
and Stehlé [181, 182, 183, 184], and Gama, Howgrave-Graham, Koy and
Nguyen [82].

§2.6 There are lots of examples in cryptography in which linear problems
are solved using lattices. See Nguyen and Stern [185] for some examples. A
nice example of an attack on an actual working system, found by Nguyen, can
be found in [179]. In some of these attacks, it also possible to prove that the
target vector is a smallest vector with high probability. Thus, provable attacks
are also possible. For example, see Nguyen and Shparlinski [180].

§2.7 Coppersmith’s result for univariate modular polynomials, Theorem 2.8,
was first stated for the case β = 1 by Coppersmith [51]. The case d = 1 and
β < 1 was later shown by Boneh, Durfee and Howgrave-Graham [32] in their
Lattice Factoring Method. The most general version, as stated here, was given
by May [164] (for a proof see [165]).

Some early extensions of Coppersmith’s methods to multivariate modu-
lar polynomials were given by Bleichenbacher [17], Jutla [127], and Boneh
and Durfee [28]. The possibility of extending the methods was discussed by
Coppersmith in the original papers.

There is another extension of Coppersmith’s method for finding small in-
teger solutions of a bivariate polynomial to trivariate polynomials by Bauer
and Joux [11]. Their method uses lattice reduction and Gröbner bases com-
putations to compute a third polynomial that is algebraically independent to
the first two (which from Coppersmith’s original method were already alge-
braically independent). A criterion for this third polynomial to be algebraically
independent is developed, which relies on knowledge of both the original poly-
nomial and the second polynomial (obtained via basis reduction). This line of
research may lead to removing the algebraic independence assumption from
Coppersmith’s methods in general.
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Chapter 3

Some Early Attacks

In this chapter, we collect some of the earlier known attacks on RSA. Several
of these early attacks are examples of protocol failures. A protocol failure
occurs when a secure instance of a cryptosystem is not used properly, resulting
in the failure of the desired security goals of the protocol. All of the proto-
col failures here allow an adversary to compute the plaintext given several
ciphertexts without having to break an instance of RSA.

3.1 Common Modulus Attack

The common modulus protocol was an early proposal in which a central
key authority (i.e., a trusted third party) would generate an RSA modulus
and distribute valid key pairs, all with the same modulus, to users within
the system. A user’s private key in this protocol is simply (d, N), so the
factorization of the modulus is not known by the user. The intention was that
only the central key authority would have knowledge of the factorization of
the common modulus.

In 1983, Simmons [222] showed that a protocol failure existed when the
same plaintext was encrypted with two different public keys having the same
modulus and relatively prime public exponents. Given the two ciphertexts and
the two public keys, he showed that the plaintext can be easily computed. To
see this, let (e1, N) and (e2, N) be two valid RSA public keys with relatively
prime public exponents. Since e1 and e2 are relatively prime, we can easily
compute integers a1 and a2 such that a1e1 + a2e2 = 1. For any plaintext m,
given c1 = me1 mod N and c2 = me2 mod N , the plaintext is recovered by
simply computing ca1

1 ca2
2 mod N , since computing in ZN we have

ca1
1 ca2

2 = ma1e1ma2e2 = ma1e1+a2e2 = m.

This attack can be mounted by anyone that has access to the public keys and
has observed the two ciphertexts.

In 1984, DeLaurentis [62] showed that the protocol was completely inse-
cure. He showed that knowledge of any one public-private key pair was suffi-
cient to compute a valid private key for any other public key with the same
modulus. We restate this result in the following theorem.

51
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Theorem 3.1. Let (e, N) be a valid RSA public key with corresponding private
key (d, N), and let (e1, N) be another valid public key such that e1 �= e. Given
e, d,N and e1, a valid decrypting exponent for the public key (e1, N), given by

d1 = e−1
1 mod

ed − 1
gcd(e1, ed − 1)

,

can be computed in time polynomial in log(N).

Proof: The key equation for the known public-private key pair can be written
as ed− 1 = kλ(N), where k is some positive integer. Since e1 is a valid public
exponent it must satisfy gcd(e1, λ(N)) = 1, and so gcd(e1, kλ(N)) = k′, for
some integer k′ satisfying k′|k. Letting k̃ = k/k′, we then have that

ed − 1
gcd(e1, ed − 1)

=
kλ(N)

k′ = k̃λ(N),

and so the private exponent d1, as specified above, satisfies

e1d1 = 1 + k1(k̃λ(N)),

for some positive integer k1. Thus, e1d1 ≡ 1 (mod λ(N)) and so d1 is a valid
private exponent for the public key (e1, N). Since all computations can be
done in time polynomial in log(N), the result follows. �

In addition, using an idea attributed to Simmons, DeLaurentis showed
that given a single public-private key pair, the modulus can be factored with a
probabilistic polynomial time Las Vegas algorithm. Given e and d, one simply
computes a multiple of φ(N), namely ed− 1 = kφ(N), and applies the results
of Miller [173] (which can probabilistically factor N given a multiple of φ(N)).
Thus, the protocol is completely insecure. Any user in the system can easily
factor the modulus using only their own public-private key pair.

As a result of these attacks, it is clear that each RSA modulus should be
known to only one user.

3.2 H̊astad’s Broadcast Attack

Another protocol failure occurs when several related plaintext messages
are encrypted with small public exponents and different moduli. Collectively,
the attacks on these protocol failures are often referred to as the H̊astad
broadcast attack. We consider two types of attacks: common plaintext and
related message attacks.
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3.2.1 Common Plaintext Attack

A protocol failure occurs when the same plaintext m is encrypted with
several public keys (e, Ni), each having the same public exponent e and a
different moduli Ni. An attack on this protocol failure was first published in
1985 by H̊astad [97, 98]. We state the attack in the following theorem.

Theorem 3.2. Let (e, N1), . . . , (e, N�) be � ≥ e valid RSA public keys
with pairwise relatively prime moduli, let N0 = min{N1, . . . , N�} and let
N =

∏�
i=1 Ni. For any plaintext message m < N0, given ci = me mod Ni

and (e, Ni) for i = 1, . . . , �, the plaintext m can be computed in time polyno-
mial in log(N).

Proof: Since the moduli are pairwise relatively prime, we use the Chinese
Remainder Theorem to compute C ≡ me (mod N) using the ci and Ni (for
i = 1, . . . , �) as input. Since m < N0, it follows that me < N1N2 . . . N� = N ,
and so C = me. Computing the e-th root of C = me over the integers yields
the plaintext m. Since all computations can be done in time polynomial in
log(N), the result follows. �

3.2.2 Related Plaintext Attack

The last protocol failure that we consider occurs when several related
plaintexts are encrypted with small public exponents and different moduli. In
this context, the plaintexts mi are related if mi = fi(m) for some (known)
polynomials fi. Here, m is the only unknown part of each plaintext, and will be
referred to as simply the plaintext. Notice that the common plaintext protocol
failure (from above) is special case of this protocol failure.

We restate the attack, sometimes referred to as the strong H̊astad broad-
cast attack, as presented by Bleichenbacher [17], in the following theorem.

Theorem 3.3. Let (e1, N1), . . . , (e�, N�) be valid RSA public keys with pair-
wise relatively prime moduli, N0 = min{N1, . . . , N�} and N = N1N2 · · ·N�.
Let fi(x) ∈ ZN1 [x], . . . , f�(x) ∈ ZN�

[x] be known polynomials. For any plain-
text m < N0, if � ≥ maxi{ei deg(fi(x))} then given ci = fi(m)ei mod Ni and
(ei, Ni) for i = 1, . . . , �, the plaintext m can be computed in time polynomial
in log(N).

Proof: Without loss of generality, we assume that the fi(x) are monic. If fj(x)
is not monic, we can simply multiply it by the inverse its leading coefficient
modulo Nj . If the inverse does not exist, the factorization of Nj is revealed,
which breaks that instance of RSA and lets us easily decrypt ci to recover m.

Let δ = maxi{ei deg(fi(x))}. For i = 1, . . . , �, we define the degree δ monic
polynomials

gi(x) = xhi(fi(x)ei − ci) ∈ ZNi
,
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where hi = δ − deg(fi(x)ei). Notice that each of these polynomials satisfies
gi(m) ≡ 0 (mod Ni). Since the moduli are pairwise relatively prime, we use
the Chinese Remainder Theorem to compute a new degree δ monic polynomial
G(x) ∈ ZN [x] using the gi(x) and Ni as input. This new polynomial satisfies

G(m) ≡ 0 (mod N),

where m < N0 < N1/� < N1/D. Using Coppersmith’s method for univariate
polynomials (Theorem 2.8) we can then compute m. Since all computations
can be done in time polynomial in log(N), the result follows. �

3.3 Cycling Attacks

The last of the early attacks that we consider are the cycling attacks.
While the attacks do not pose a threat to the security of RSA in general,
we include them to illustrate the potential danger in using RSA primes with
special structure.

In 1977, Simmons and Norris [225] observed that a plaintext can always
be computed by repeatedly re-encrypting its ciphertext until it cycles back
to itself (i.e., cycles back to the original ciphertext). Given a ciphertext c =
me mod N and the public key (e, N), if after �+1 re-encryptions the ciphertext
is recovered, that is

ce�+1 ≡ c (mod N),

then it follows that

ce� ≡ m (mod N).

Thus, the plaintext is revealed after � re-encryptions. The original cycling
attack was to simply find the smallest � such that the plaintext was recovered.
This smallest value for � is sometimes referred to as the recovery exponent
(for the plaintext m). Notice that there are always some plaintext messages
that have very small recovery exponent. For example, the plaintexts m = ±1
have recovery exponent � = 1 (since e is odd, it follows that c = m). Further, it
can be shown that the recovery exponent for any plaintext can be characterized
by the following theorem (see Katzenbeisser [130, Theorem 5.5] for a proof).

Theorem 3.4. Let (e, N) be a valid RSA public key. For any plaintext m ∈
Z∗

N , the recovery exponent for m divides λ(λ(N)).

The theorem implies that λ(λ(N)) is the largest possible recovery expo-
nent. Therefore, if the primes are chosen so that λ(λ(N)) is sufficiently small,
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the attack is feasible for all plaintexts. Alternatively, if λ(λ(N)) has only small
prime factors, the attack may be feasible for some plaintexts. If safe primes are
used, however, it is expected that most plaintexts will have a large recovery
exponent since λ(λ(N)) is large and has large prime factors. Further, it been
shown by Friedlander, Pomerance and Shparlinski [78], that for almost all
choices of balanced primes and public exponents, all but a negligible amount
of plaintexts will have recovery exponent � > N1−ε, for some small ε. Thus,
for sufficiently large N , the cycling attack is expected to be infeasible.

In 1979, Williams and Schmid [251] generalized the cycling attack to search
for cycles modulo p (or q) instead of modulo N as the original method does.
Here, one searches for the smallest k satisfying

g = gcd(cek − c, N) > 1.

If 1 < g < N , then a cycle modulo p or q is found and g reveals the factoriza-
tion of the modulus (i.e., g = p or g = q). If g = N , then a cycle modulo N

is found just as in the original attack, and cek−1 ≡ m (mod N).
The effectiveness of the modified attack clearly depends on the size of k. If

the prime p is chosen so that λ(λ(p)) = λ(p−1) has only small prime factors or
is sufficiently small itself, then a cycle modulo p might be found with relatively
small k (similarly for the prime q). Based on [78], it is expected that all but
a very small number of plaintexts will have k > N1/2−ε, when the primes
are randomly chosen. Thus, for sufficiently large random primes, the modified
cycling attack is also expected to be infeasible.

3.4 Additional Notes

For further reading on protocol errors, see Moore [175] and Simmons [223].

§3.1 The common modulus protocol was an early and recurrent proposal
before it was ultimately shown to be completely insecure. For example, it is
mentioned, without reference, in [62], [97] and [175], that this type of protocol
had been reinvented several times.

A deterministic polynomial time algorithm that factors an RSA modulus
given the public key and the private exponent was not found until more than
twenty years after the probabilistic polynomial time algorithm was found.
The deterministic method, using Coppersmith’s method for finding small
roots of bivariate integer equations (Theorem 2.12), was presented in 2004
by May [163], and later refined by Coron and May [58].

§3.2 The common plaintext attack (Theorem 3.2) was first published in 1985
by H̊astad [97], who mentions, without reference, that the attack was already
known to at least Blum, Lieberherr and Williams. In fact, the attack was
mentioned as early as 1983 in an unpublished work by Blum [24].
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H̊astad’s related message attack originally applied to linearly related mes-
sages when all the public exponents were the same and required � ≥ 1

2e(e+1)
ciphertexts due to the lattice-based techniques known at the time (see for
example, [97], [98], [242] or [87]). With the advent of Coppersmith’s method
for finding small solutions to univariate modular equations (Theorem 2.8),
the number of ciphertexts needed is reduced to � ≥ e (for linearly related
plaintexts). The generalization to arbitrary polynomially related plaintexts is
straightforward and was described by Shimizu [217] and Bleichenbacher [17].

The result of Theorem 3.3 is actually not optimal. Bleichenbacher [17]
has described how it is possible to recover the plaintext given less than δ =
maxi{ei deg(fi(x))} ciphertexts provided that different public exponents are
used. In fact, a stronger result has been presented more recently by May and
Ritzenhofen [166]. Letting δi = ei deg(fi(x)), they have shown that if the δi

satisfy

�∑
i=1

1
δi

≥ 1,

then the plaintext can be recovered. Thus the only requirement on the number
of ciphertexts needed is that this inequality be satisfied.

§3.3 Some (more recent) generalized cycling attacks, by Gysin and Seberry,
can be found in [94].

Using the Chinese Remainder Theorem, it can be shown that there are
exactly K1 = (gcd(e − 1, p − 1) + 1)(gcd(e − 1, q − 1) + 1) plaintext messages
with recovery exponent � = 1. These plaintext messages are the fixed points
of the RSA function. See Katzenbeisser [130] for a proof of this result. From
this expression we see that there are always at least nine fixed points since p,
q and e are all odd. More generally, the number of plaintext messages with
recovery exponent � is given by K� = (gcd(e�−1, p−1)+1)(gcd(e�−1, q−1)+1).
See Joye et al. [126] for a proof of this. The expected value of K�, taken over
all choices of primes, is investigated by Yu [256].

In [201], Rivest and Silverman argue that using random primes is suffi-
cient to avoid the cycling attacks with high probability (and thus argue that
safe primes are not needed). Mathematical rigor to support their argument
was later given by Friedlander, Pomerance and Shparlinski [78]. A history of
cycling attacks on RSA can be found in [201].



Chapter 4

Small Public Exponent Attacks

In this chapter, we illustrate the potential dangers of using a small public
exponent. All of the attacks assume some knowledge of the plaintexts being
encrypted and only recover the plaintext. None of the attacks can recover the
private exponent or factor the modulus.

Using a very small public exponent can drastically reduce the costs of
encryption. The smallest possible public exponent e = 3, for example, requires
only two modular multiplications for each encryption, as opposed to roughly
3
2 log2(N) for a full sized public exponent.

The idea of using a small public exponent for RSA has been known since
the early 1980s (see [131, pages 386–389], for example) if not earlier. The first
published observation that small exponents can be used to greatly reduce costs
for algorithms based on modular exponentiation appears to be by Rabin [199]
in 1979. In practice, most instances of RSA use a fixed small public exponent
such as e = 216 + 1 or e = 3.

4.1 Stereotyped Message Attack

When part of a plaintext message is known it is possible to recover the
entire plaintext if both the public exponent and the size of the unknown part
are sufficiently small.

In the extreme case suppose that we know that the plaintext will be small
relative to the size of the modulus. That is, we know that the most significant
bits of the plaintext are all zeros. If a plaintext m < N1/e is encrypted with
public exponent e, then clearly the plaintext can be recovered since

c = me mod N = me.

Simply taking the e-th root of ciphertext c over the integers reveals the plain-
text m. For a random plaintext message in ZN it is very unlikely that the
plaintext will ever be so small. In practice, however, the plaintext message is
usually a (relatively small) secret key for a symmetric key encryption scheme.
When the public exponent is very small, such as e = 3 or e = 5, it is then
quite possible that the plaintext message is smaller than N1/e. For example,
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with a 1024-bit modulus and public exponent e = 3, symmetric keys less than
about 342 bits can be recovered. Appending random bits to the plaintext so
that m > N1/e easily defeats this attack though.

Suppose now that the plaintext is large, so that the above attack cannot
work, but we know the structure of most of it. For example, suppose that a
plaintext message that sends a daily session key has the form

“The secret for February 29, 2008 is ?????”,

where the actual secret is unknown but small. In this situation, Copper-
smith [51, 52] showed that if the unknown part of a plaintext is sufficiently
small then it is possible to recover it given the ciphertext. The main result is
given in the following theorem.

Theorem 4.1. Let (e, N) be a valid RSA public key and let m be any plaintext.
Given the public key and c = me mod N , if all but at most a 1/e fraction of
consecutive bits of the plaintext is known, then all of m can be computed in
time polynomial in log(N) and in e.

Proof: Since at most a 1/e fraction of consecutive bits of m is known, we can
write the plaintext as m = m22k2 + m12k1 + m0, where everything is known
except m1. Further, we know that m1 satisfies |m1| < N1/e. This suggests
we look for small solutions of the monic degree e polynomial fN (x) ∈ ZN [x]
given by

fN (x) = 2−k1e
(
(m22k2 + x2k1 + m0)e − c

)
mod N,

since fN (m1) = 2−k1e(me − c) = 0 mod N . That is, m1 is a (small) root of
fN (x) modulo N . Since |m1| < N1/e, Coppersmith’s result for finding small
solutions to univariate modular equations (Theorem 2.8) can be used to com-
pute m1, which then reveals the entire plaintext. Since all computations can
be done in time polynomial in log(N) and e, the result follows. �

For Theorem 4.1 to be useful in practice, the public exponent must be
rather small. This follows for two reasons. First, as soon e > log2(N) the attack
requires all of the bits of the plaintext to be known. Second, the computational
costs of the attack increase with increasing public exponent size, since the
dimension of the lattice used in Coppersmith’s method is polynomial in e. The
attack is not relevant, for example, with the commonly used public exponent
e = 216+1. The attack is also not relevant when a proper randomized padding
scheme is used, provided that at least a 1/e fraction of the bits of the plaintext
are random.
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4.2 Related Message Attacks

When two plaintexts that are related by an affine relationship are en-
crypted with the same public key, it is possible to recover the plaintexts if the
public exponent is small and the relation between the plaintexts is known.
The original attack for public exponent e = 3, by Franklin and Reiter [77], as
taken from Coppersmith et al. [53], is given in the following theorem.

Theorem 4.2. Let (e, N) be a valid RSA public key with e = 3. Let m1 and
m2 be two plaintext messages satisfying m2 = am1 + b. Given a, b, c1 =
m3

1 mod N , c2 = m3
2 mod N , and the public key, both m1 and m2 can be

compute in time polynomial in log(N).

Proof: Given c1, c2, a, b and N , the plaintext m1 can be directly computed
since

b(c2 + 2a3c1 − b3)
a(c2 − a3c1 + 2b3)

mod N =
m1(3a3bm2

1 + 3a2b2m1 + 3ab3)
3a3bm2

1 + 3a2b2m1 + 3aβ3
mod N = m1.

Once m1 is known, we simply compute m2 = am1 +b. If the computation fails
(i.e., the denominator does not exists modulo N) then a factor of N is found
and the system is completely broken. Since all computations can be done in
time polynomial in log(N), the result follows. �

In the above attack, Franklin and Reiter construct two polynomials, f(m1)
and g(m1) = m1f(m1), using only the public key, the two ciphertexts and
explicit knowledge of the relationship between the two plaintexts (a and b).
The plaintext m1 is easily obtained since m1 = g(m1)/f(m1) mod N . As
mentioned in [53], this approach can be extended to arbitrary public exponent
e. However, the complexity of the polynomials increases with larger values of
e and there is no known systematic method of determining these polynomials.

In addition to constructing explicit formulae as in the Franklin and Re-
iter attack, Coppersmith et al. [53] show that the plaintexts can usually be
recovered by computing the gcd of certain polynomials. The main result for
two related plaintexts with arbitrary public exponent is given in the following
attack.

Attack 4.3. Let (e, N) be a valid RSA public key and let m1 and m2 be two
plaintext messages satisfying m2 = f(m1), for some polynomial f . Given the
polynomial f , the ciphertexts c1 = me

1 mod N , c2 = f(m1)e mod N , and the
public key, then it is likely that both m1 and m2 can be computed in time
polynomial in e and log(N).

Justification: Notice that x = m1 is a solution of both modular equations

xe − c1 ≡ 0 (mod N)
f(x)e − c2 ≡ 0 (mod N).
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It then follows that the polynomial g(x) ∈ ZN [x], given by

g(x) = gcd(xe − c1, f(x)e − c2) mod N,

is a multiple of the polynomial x − m1. If g(x) = x − m1, then the plain-
texts are revealed since g(0) = −m1 and m2 = f(m1). It is expected that
g(x) = x−m1 except in some rare cases1. Since all computations can be done
in time polynomial in e and log(N), the attack follows. �

Example Consider the public key (e, N) = (5, 5836720399). Given the ci-
phertexts c1 = 2083888300 and c2 = 2918851827 for two plaintext messages
related by m2 = m1 + 17, let f1(x) = x5 − c1 = x5 − 2083888300 and

f2(x) = (x + 17)5 − c2

= x5 + 85x4 + 2890x3 + 49130x2 + 417605x − 2917431970.

Computing the gcd of these two polynomials modulo N yields the poly-
nomial g(x) = gcd(f1(x), f2(x)) = x + 5055693378 = x − m1, which ex-
poses the plaintext m1. Thus, the plaintext messages are given by m1 =
−5055693378 mod N = 781027021 and m2 = m1 + 17 = 781027038. �

The previous attack can be generalized to recover any number of related
polynomials given their ciphertexts and knowledge of how the plaintexts are
related. The main result from Coppersmith et al. [53] is given in the following
attack.

Attack 4.4. Let (e, N) be a valid RSA public key and m1, . . . , m� be � plain-
text messages satisfying a polynomial relation f(m1, . . . , m�) ≡ 0 (mod N).
Given the polynomial f , the ciphertexts c1 = me

1 mod N, . . . , c� = me
� mod N ,

and the public key, then it is expected that the plaintexts can be computed in
time polynomial in e, � and log(N).

Justification: Consider the following � + 1 polynomial modular equations

f0(x1, . . . , x�) = f(x1, . . . , x�) ≡ 0 (mod N)
f1(x1, . . . , x�) = xe

1 − c1 ≡ 0 (mod N)
...

f�(x1, . . . , x�) = xe
� − c� ≡ 0 (mod N).

Computing a Groebner basis, Groebner([f0, f1, . . . , f�]), for these polynomials
should yield [x1 − m1, . . . , x� − m�], which reveals all the plaintexts. Since
computing a Groebner basis requires time polynomial in e, � and log(N), the
attack follows. �

1For more discussion about the rare cases when g(x) �= x − m1, see [53].
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4.3 Random Padding Attack

As the previous section has shown, plaintexts that have a known relation-
ship and are encrypted with the same public key might be recovered. When two
plaintexts are known to be related by the affine relation m2 = m1 + b, where
b is unknown, it is still possible to recover the plaintexts provided that b is
sufficiently small. The attack for public exponent e = 3, by Coppersmith [52],
is given in the following theorem.

Theorem 4.5. Let (e, N) be a valid RSA public key with e = 3. Let m1 and
m2 be two plaintext messages satisfying m2 = m1 + b. Given c1 = m3

1 mod N ,
c2 = (m1 + b)3 mod N and the public key, if |b| < N1/9 then the plaintexts
m1 and m2 can be computed in time polynomial in log(N).

Proof: Since m3
1−c1 ≡ 0 (mod N) and (m1+b)3−c2 ≡ 0 (mod N), it follows

that

Resultantm1

(
m3

1 − c1, (m1 + b)3 − c2

)
≡ b9 + (3c1 − 3c2)b6 + (3c2

1 + 21c1c2 + 3c2
2)b

3 + (c1 − c2)3 (mod N)
≡ 0 (mod N).

From this resultant computation, notice that the monic degree 9 polynomial
fN (x) ∈ ZN [x], given by

fN (x) = x9 + (3c1 − 3c2)x6 + (3c2
1 + 21c1c2 + 3c2

2)x
3 + (c1 − c2)3 mod N,

has root x0 = b modulo N . Since |b| < N1/9, we can use Coppersmith’s
method for finding small solutions to univariate modular equations (Theo-
rem 2.8) to compute b. Once b is known, we then apply Franklin and Reiter’s
related message attack, Theorem 4.2, to compute m1 and m2. Since all com-
putations can be done in time polynomial in log(N), the result follows. �

4.4 Leaking Information

We finish this chapter by noting that some information about the private
exponent can be exposed when a small public exponent is used. It was observed
by Boneh, Durfee and Frankel [30, 31], that knowledge of the constant k in
the key equation ed = 1+kφ(N) leaks information about the most significant
bits of the private exponent. Their result is given in the following theorem.
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Theorem 4.6. Let (e, N) be a valid RSA public key and (d, p, q) be its cor-
responding private key such that ed = 1 + kφ(N), for some positive integer
k. Given the public key and the constant k, we can compute d1 such that
|d1 − d| < p + q in time polynomial in log(N).

Proof: Given the public key (e, N) and k, we compute d1 =  1
e (1 + kN)�.

Thus, d1 = 1
e (1 + kN) + α for some |α| < 1. Recalling that the key equation

can be written as ed = 1 + k(N − s), it follows that

|d1 − d| =
∣∣∣∣1 + kN

e
+ α − 1 + k(N − s)

e

∣∣∣∣ =
∣∣∣∣ks

e
+ α

∣∣∣∣ < s + 1 = p + q,

since k < e and s = p + q − 1. Computing d1 can be done in time polynomial
in log(N), so the result follows. �

For balanced prime RSA, which is the general case, the sum of the primes
satisfies p + q > 3

2N1/2. Therefore, given the public key and the constant k,
we can compute d1 such that |d1−d| < 3

2N1/2. That is, we know about 1/2 of
the most significant bits of the private exponent when k is known. Conversely,
it is easily shown that knowledge of the most significant bits of the private
exponent leaks information about the constant k. This will be used in some
of the partial key exposure attacks in Chapter 6.

When the public exponent is sufficiently small, it is possible to simply
guess k with an exhaustive search since k < e. In general, this also requires a
mechanism to test the guesses in order to determine the correct value of k. In
the extreme case of e = 3, however, it is known that k = 2. This observation,
made by Boneh [25], is formalized in the following theorem.

Theorem 4.7. Let N = pq be an RSA modulus with p, q > 3 and let (e, N)
be a valid RSA public key. If e = 3, then the constant in the key equation
ed = 1 + kφ(N) satisfies k = 2.

Proof: From the key equation we know that 0 < k < e. Since e = 3 is a
valid public exponent, we know that gcd(3, p − 1) = 1 and so p − 1 �≡ 0
(mod 3). Also, since p > 3, we know that gcd(3, p) = 1 and so p − 1 �≡ 2
(mod 3). Therefore, p − 1 ≡ 1 (mod 3) and, similarly, q − 1 ≡ 1 (mod 3).
It follows that φ(N) = (p − 1)(q − 1) ≡ 1 (mod 3). Now, reducing the key
equation 3d = 1 + kφ(N) modulo 3, we then have k ≡ −1 ≡ 2 (mod 3). Since
0 < k < 3, it follows that k = 2. �

Therefore, when public exponent e = 3 is used, roughly 1/2 of the most
significant bits of the private exponent are always exposed. While this may
suggest that RSA with public exponent e = 3 (or other small values of e)
might be insecure there is no known attack that exploits this property of RSA
without additional information (see Chapter 6 for more information about
attacks that use partial knowledge of the private keys). And, as discussed by
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Boneh, Durfee and Frankel [30, 31], if there was an algorithm that could fac-
tor the modulus given 1/2 of the most significant bits of the private exponent
(when the public exponent is small) then this algorithm could be used as a
general factoring algorithm for any RSA modulus. Consider such an algorithm
that has runtime T . For any RSA modulus N , let z be the smallest prime that
does not divide φ(N). It follows that (z, N) is a valid public key for the mod-
ulus N and so, from Theorem 4.6, we can compute 1/2 of the most significant
bits of its corresponding private exponent by trying each candidate for k < z.
The correct candidate allows us to compute 1/2 of the most significant bits
of the private exponent and we can then factor the modulus. Since z is not
known, we need to test each odd prime and each candidate for k for each
prime until we reach z. The number of candidates tested will be bound by z2

and so the general factoring algorithm takes time at most z2T . For randomly
chosen RSA primes, it is expected that z will not be very large and so with
high probability the runtime will be dominated by T .

4.5 Additional Notes

All of the attacks in this chapter can be avoided by using a proper padding
scheme. Devising and implementing a secure padding scheme, however, is not
trivial. See Bleichenbacher [18], Coron et al. [57] and Manger [157] for some
attacks on proposed padding scheme standards.

§4.1 If the unknown bits of the plaintext message are not contiguous it is still
possible to recover them if enough of the plaintext is known. The ciphertext
can be written as a multivariate polynomial (of degree e) where each variable
represents an unknown (contiguous) part, or block, of the plaintext. These
unknown blocks are then also a root of the polynomial modulo N . Using the
heuristic extension of Coppersmith’s method for multivariate modular equa-
tions, the unknown parts can be computed if the combined size of the unknown
blocks is smaller than N1/e. This observation was made by Coppersmith [52].

§4.2 Similar to Franklin and Reiter’s attack (Theorem 4.2), it is possible to
construct two polynomials, m1f(m1) and f(m1) modulo N , given only the
ciphertexts for two (or sometimes more) plaintexts related by some known
polynomial relationship for arbitrary public exponent and polynomial rela-
tionship. Dividing the polynomials reveals the plaintext m1 (which reveals the
other plaintext). For example, Coppersmith et al. [53] show that two plaintexts
related by the affine relation m2 = m1 + 1 can be recovered when encrypted
with public exponent e = 5. Given c1 = m5

1 mod N and c2 = (m1+1)5 mod N ,
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the plaintexts can be recovered since

f(m1) = c3
2−3c1c

2
2+3c2

1c2−c3
1+37c2

2+176c1c2+37c2
1+73c2−73c1+14

m1f(m1) = 2c3
2−c1c

2
2−4c2

1c2+3c3
1+14c2

2−88c1c2−51c2
1−9c2+64c1−7.

Another example, by Antonov and Antonova [7], shows that three plaintexts
related by the affine relations m2 = am1+b and m3 = am1−b can be recovered
when encrypted with public exponent e = 5. Given the three ciphertexts
c1 = m5

1 mod N , c2 = (am1 + b)5 mod N and c3 = (am1 − b)5 mod N , and
the values of a and b, the plaintexts can be recovered since

(c2+c3+8a5c1)b
(c2−c3+8b5)a

mod N =
m1a(10a4m4

1b+20α2m2
1b

3+10b5)
a(10a4m4

1b+20a2m2
1b

3+10b5)
mod N = m1.

§4.3 Notice that the degree of all the monomials in the polynomial

fN (x) = x9 + (3c1 − 3c2)x6 + (3c2
1 + 21c1c2 + 3c2

2)x
3 + (c1 − c2)3,

are multiples of three. Using the change of variable y = x1/3, we can simplify
things by looking for small solutions of the monic degree 3 polynomial

gN (y) = y3 + (3c1 − 3c2)y2 + (3c2
1 + 21c1c2 + 3c2

2)y + (c1 − c2)3,

instead of looking for small solutions of fN (x). In practice, this improves
the efficiency of the attack since smaller lattices are used (since the lattice
dimension increases with increasing degree of the polynomial).

As observed by Coppersmith [52], his random padding attack, Theo-
rem 4.5, is easily extended to arbitrary public exponent. The resultant com-
putation will yield a monic degree e2 polynomial which has root b modulo N .
Thus, the random padding must satisfy |b| < N1/e2

, which is quite restrictive
for values of e > 3. For example, with a 1024-bit modulus, the padding can
be at most 40 bits when e = 5 and only 3 bits when e = 17.

§4.4 Since exposing 1/2 of the most significant bits of the private exponent is
not a security risk when a small public exponent it used, it was suggested by
Boneh, Durfee and Frankel [30, 31], that these most significant bits could be
made public. In this way, the decryption costs could be reduced by allowing
a third party (perhaps during encryption or by a server) to compute a partial
decryption of a ciphertext c using the most significant bits of the private
exponent. For example, letting d = d1+d0, where d1 is the 1/2 most significant
bits of d (which is public) and d0 is the 1/2 least significant bits of d (which
remains secret), a third party could compute m1 = cd1 mod N . A constrained
device, for example, then need only compute m0 = cd0 mod N , and then
recover the plaintext with m = m0m1 mod N . Since d0 is about 1/2 the bits
as the modulus, the decryption costs are also reduced by about 1/2.



Chapter 5

Small Private Exponent Attacks

In this chapter, we illustrate the dangers of using RSA with a small private
exponent. While it may be desirable in some situations to decrease decryption
costs as much as possible there are, as will be demonstrated, very practical
attacks that can render the system completely insecure if the private exponent
is chosen too small.

In any cryptosystem a trivial brute force exhaustive search can always be
used to break the system when the private (or secret) key is chosen from a
small set. For RSA, all private exponents d < 2�, where � depends on the
current state-of-the-art in computing, can simply be guessed. For example, it
is currently feasible to recover all private exponents d ≤ 260 but infeasible for
all private exponents d ≤ 280. Each of the attacks we consider in this chapter,
however, can recover private exponents much larger than can be found with
a simple exhaustive search. In fact, all of the attacks can efficiently break
instances of RSA with private exponents up to N δ for some δ ≥ 1/4. For a
1024-bit modulus, the weakest of these attacks can already break instances
with private exponents d ≤ 2256.

In contrast to most the attacks in the previous chapters, which recovered
one or more plaintexts given the public key and one or more ciphertexts, all
of the attacks on small private exponent RSA exploit the key equation and
completely break the instance of RSA by factoring the modulus given only
the public key.

Throughout this chapter we will assume, unless otherwise stated, that
when the public and private exponents are defined modulo λ(N) that each of
them is smaller than λ(N). From the key equation

ed = 1 + kλ(N),

it then follows that

0 < k =
ed − 1
λ(N)

<
ed

λ(N)
< min{e, d},

In particular, we have k < d since we are interested in small private expo-
nent RSA in this chapter. The same arguments holds when the exponents are
defined modulo φ(N) as well.

65
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5.1 Wiener’s Continued Fraction Attack

The first significant attack on small private exponent RSA was Wiener’s
continued fraction attack [249]. Given only the public key (e, N), the attack
factors the modulus using information obtained from one of the convergents
in the continued fraction expansion of e/N We restate Wiener’s attack, in its
most general form, in the following theorem.

Theorem 5.1. Let N = pq be an RSA modulus, let e be a valid public expo-
nent and let d be its corresponding private defined modulo λ(N). Let k be the
integer satisfying ed = 1+ kλ(N), g = gcd(p− 1, q− 1), g0 = g/ gcd(g, k) and
k0 = k/ gcd(k, g). If the private exponent satisfies

d <
pq

2(p + q − 1)g0k0
=

N

2sg0k0
, (5.1)

then N can be factored in time polynomial in log(N) and g/k.

Proof: Recall that for an RSA modulus N = pq,

λ(N) = lcm(p − 1, q − 1) =
φ(N)

gcd(p − 1, q − 1)
=

N − s

g
,

where g = gcd(p − 1, q − 1). Thus, the key equation can be written as

ed = 1 + kλ(N) = 1 +
k

g
φ(N) = 1 +

k0

g0
(N − s), (5.2)

where k is some positive integer, k0 = k/ gcd(k, g) and g0 = g/ gcd(k, g).
Dividing both sides of this equation by dN , and assuming that the private
exponent satisfies inequality (5.1), we obtain (after some rearrangement)∣∣∣∣ e

N
− k0

dg0

∣∣∣∣ =
∣∣∣∣ 1
dN

− k0s

dg0N

∣∣∣∣ < k0s

dg0N
<

1
2(dg0)2

,

where the first inequality holds since g0 < s and all (individual) quantities are
positive; and the second inequality holds since (5.1) is satisfied. In particular,
since ∣∣∣∣ e

N
− k0

dg0

∣∣∣∣ < 1
2(dg0)2

, (5.3)

we know, from Theorem 2.2 (continued fractions), that k0/dg0 is one of the
convergents in the continued fraction expansion of e/N . Letting ci = ai/bi be
the i-th convergent of e/N , we know that k0/dg0 = aj/bj for some j. Now,
writing the key equation as ed = 1 + (k0/g0)φ(N), notice that

φ(N) = e

(
dg0

k0

)
− g0

k0
=
⌊
e

(
bj

aj

)⌋
−
⌊

g0

k0

⌋
.
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Thus, we can compute φ(N) if we know the correct convergent cj and can
guess the value of �g0/k0�. We know that we have computed φ(N) when we
are able to factor the modulus (since knowing N = pq and φ(N) = (p−1)(q−1)
allows us to solve for p and q).

To find the correct convergent and compute φ(N), we can do the following.
Starting with m = 0, we compute candidates for φ(N) by iterating though
the convergents of e/N and computing φ′ = �e/ci�+ m. With each candidate
for φ(N), we try to factor the modulus. If none of the candidates yield φ(N)
(and hence the factorization of N) we repeat the process with m incremented
by 1. In this way we are guaranteed to eventually compute the candidate
φ′ = �e/cj� + �g0/k0� and hence factor the modulus. Each test (attempt at
factoring the modulus with N and a candidate for φ(N)) can be done in time
polynomial in log(N). Since the total number of convergents of e/N is poly-
nomial in log(N) and we test at most �g0/k0� = �g/k� candidates for each
convergent, the result follows. �

The method for obtaining the correct candidate in this proof is not optimal.
For example, if |e/N−ci| is too large we can (based on (5.3)) ignore it. In fact,
as will be seen in the next section, the candidate convergents can be narrowed
to a very small set. Also, when the RSA primes are randomly chosen it is
expected with high probability that g will be very small (see Appendix A for
example). Therefore, it is expected that �g/k� = 0 and only one iteration
of the candidate convergents is actually needed. In almost all derivations of
Wiener’s attack it is assumed that �g/k� = 0 (or g/k < 1) at some point
(including the original derivation).

The sufficient condition in Theorem 5.1 is not the usual condition that
most associate with Wiener’s attack. The more common condition,

d <
1
c
N1/4,

for some small constant c > 1, is obtained by assuming that the public expo-
nent is roughly the same size as the modulus, that the primes are balanced
and that g0 is small. In a typical instance of RSA with randomly generated
primes and a small private exponent, these assumptions are valid. This bound
(roughly speaking d < N1/4) is the reference point for Wiener’s attack (and
will sometimes be called Wiener’s bound).

We illustrate the attack on a typical instance of small private exponent
RSA with the following example.

Example Consider the public key (e, N) = (58549809, 2447482909). The
continued fraction expansion of e/N is given by

[0, 41, 1, 4, 23, 78, 1, 6, 8, 1, 1, 1, 4, 3, 2],
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and the first few convergents are given by

0,
1
41

,
1
42

,
5

209
,

116
4849

,
9053

378431
,

9169
383280

,
64067

2678111
, . . .

Testing each convergent in order, with m = 0, the first three convergents do
not yield the factorization of N . The fourth convergent, c4 = 5/209, gives us
the candidate

φ′ =
⌊

e

c4

⌋
=
⌊
58549809

(
209
5

)⌋
= 2447382016.

Solving the system {φ′ = (x − 1)(y − 1), N = xy} for integer solutions,
we obtain x = 60317 and y = 40577, both being prime. Thus, φ(N) = φ′,
and we have factored the modulus. Using this factorization, we can compute
λ(N) = 611845504, g = 4 and the private key (d, p, q) = (209, 60317, 40577).
Notice that the sufficient condition for the attack, inequality (5.1), is satisfied
since d = 209 < N/2sg0k0 ≈ 2425.82. �

When a non-typical instance of RSA is used, Wiener’s attack can be weak-
ened or strengthened (compared to the N1/4 bound). Consider the general
sufficient condition from Theorem 5.1,

d <
pq

2(p + q − 1)g0k0
=

N

2sg0k0
.

There are three ways in which the bound on the private exponent can be
decreased (and hence weaken the attack).

1. Use unbalanced primes so that s = p + q − 1 becomes larger.

2. Use primes with a large g = gcd(p−1, q−1) so that (presumably) g0 also
becomes larger. This will be considered in great detail in Chapter 11.

3. Use a public exponent e > N so that k ≈ ed/N (and presumably k0)
becomes larger. A public exponent larger than N can be made by simply
adding a multiple of λ(N) to an existing (normal) public exponent. In
fact, Wiener’s attack becomes completely ineffective when e > N3/2.

The last of the methods for weakening Wiener’s attack works both ways.
Larger public exponents weaken the attack while smaller public exponents
strengthen it. Consider RSA with balanced primes, small g0, small private
exponent d = N δ < N1/2 and public exponent e = Nα for some 1

2 < α < 1.
Since ed = 1 + kλ(N), we have k ≈ Nα+δ−1. Substituting these into the
general sufficient condition for Wiener’s attack, and ignoring small constants,
we have N δ < N1−1/2−(α+δ−1)−ε, or more simply

δ <
3
4
− α

2
− ε, (5.4)
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where ε > 0 is a small constant that accounts for any small factors that were
ignored. In the typical case of e ≈ N we have α ≈ 1 and δ < 1/4 as expected.
For larger public exponents the bound on δ decreases until it vanishes at
α = 3/2, at which point the attack can guarantee nothing, and for smaller
public exponents the bound increases up to δ < 1/2 when α = 1/2.

5.1.1 Extending Wiener’s Attack

Consider small private exponent RSA with balanced primes, full sized
public exponent (e ≈ N) and small g0. In Wiener’s attack, if the private
exponent d satisfies

d <
1
c
N1/4 = N1/4−ε,

for some small ε > 0, then one of the convergents in the continued fraction ex-
pansion of e/N contains enough information to factor the modulus. When the
private exponent does not satisfy this bound, Wiener’s attack is not expected
to work. In fact, it was shown by Steinfeld et al. [229], that the probability of
success of Wiener’s attack when d = N

1
4+ρ for any ρ > 0, is negligible. The

attack, as described by Wiener, fails because no single convergent contains
the needed information to factor the modulus.

When the private exponent exceeds Wiener’s bound there is, however,
some information that can still be obtained from some of the convergents
in the continued fraction expansion of e/N . As was shown by Verheul and
van Tilborg [246], there exist successive convergents, cj = aj/bj and cj+1 =
aj+1/bj+1, such that

k0

dg0
=

xaj+1 + ybj

xbj+1 + ybj
, (5.5)

where x and y are non-negative integers. The basic idea of Verheul and van
Tilborg’s extension of Wiener’s attack is to perform an exhaustive search on
x and y for select convergent pairs until k0/dg0 is found (which can be used
to factor the modulus just as in Wiener’s attack). The correct convergent pair
can be narrowed down to one out of only three pairs, as shown by Dujella [68].
In particular, if � is the largest odd integer such that the convergent c� satisfies

c� =
a�

b�
>

e

N
+

2.122e

N
√

N
,

then the correct convergent pair is cj , cj+1 where j ∈ {�, � + 1, � + 2}.
With the correct convergent pair known (or narrowed down to one of three)

all that remains is to determine the unknown quantities x and y. For a private
exponent d = DN1/4, it is shown in [68] that with high probability both x and
y are bound by 4D (i.e., x, y < 4D). Thus, a simple brute force exhaustive
search for the correct x, y pair can be done. For each candidate pair for x, y
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one can compute a candidate of k0/dg0 (using (5.5)) and try to factor the
modulus by computing a candidate for φ(N) just as in Wiener’s attack. This
leads to a O(D2) complexity since there are 16D2 possible x, y candidates.
For each candidate, the testing can be done in time polynomial in log(N).

A more (time) efficient method, by Dujella [69], is to factor the modulus
using a meet-in-the-middle technique to determine x and y. For simplicity, we
will assume that g0 is known. If it is not known, the method can be repeated
with guesses of g0 until the correct guess yields the factorization of N . Now,
from (5.5), notice that the correct convergent pair yields dg0 = xbj+1 + ybj ,
and so for any plaintext message m

me(xbj+1+ybj) ≡ medg0 ≡ mg0 (mod N),

or moving x and y to opposite sides of the equivalence

(mebj+1)x ≡ mg0(m−ebj )y (mod N).

For some fixed plaintext message m, for example m = 2, define the constants
X and Y as X = mebj+1 mod N and Y = (mebj )−1 mod N so that

Xx ≡ mg0Y y (mod N).

The idea of the attack is to first compute Xx′
mod N for all 0 ≤ x′ < 4D

and store them in a sorted list. Then, for each 0 ≤ y′ < 4D, taken one at a
time, compute mg0Y y′

mod N and check whether or not this value is in the
list. Once a match occurs, the values of x′ and y′ (of the match) are used in
(5.5) to compute a candidate for φ(N) just as in Wiener’s attack. If x′ = x
and y′ = y then the correct value of φ(N) is computed and the modulus is
easily factored. Any false positives will be detected (and rejected) when the
candidate for φ(N) fails to factor the modulus. If x, y < 4D, then this method
is guaranteed to succeed with complexity O(D log D), which is dominated by
creating and sorting the list. This is a great improvement over the previous
brute force method. The underlying operations for each candidate (modular
exponentiations) are more costly for this method but the overall complexity is
still much better for large enough D. As with all meet-in-the-middle attacks,
we have a space-time tradeoff. This method requires O(D) space as opposed
to O(1) for the brute force method.

The details of these extensions require a deeper understanding of the the-
ory of continued fractions. Full details can be found in the original papers of
Verheul and van Tilborg [246] and Dujella [68, 69].

5.1.2 Wiener’s Attack with Lattices

Wiener’s attack can be mounted in several different ways using lattices.
We briefly outline three methods below. In the following we will assume that
the RSA primes are balanced and also, to simplify the presentation, we will
assume that the public and private exponents are defined modulo φ(N).
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5.1.2.1 Heuristic Approach

We first show that Wiener’s attack can be mounted as a heuristic lattice
attack using the method outlined in Section 2.6. We construct a lattice with
a known small vector that contains information that can be used to factor the
modulus. If this vector is a smallest vector in the lattice and if we can find
it, then we can factor the modulus. Using Minkowski’s bound (Theorem 2.3),
we can derive a sufficient condition on the size of the private exponent for the
attack.

We begin by writing the key equation, ed = 1 + k(N − s), along with the
trivial equation dN1/2 = dN1/2 as a vector-matrix equation xB1 = v given by

(d,−k)
[

N1/2 e
N

]
= (dN1/2, 1 − ks), (5.6)

where empty entries in a matrix denote zeroes. Letting B1 be a basis matrix
for a lattice L1, we see that v = (dN1/2, 1 − ks) is a vector in L1 since
x = (d,−k) ∈ Z2 (i.e., v is an integer linear combination of the rows in the
basis matrix). Next we need to show that v is a small vector in L1.

The lattice L1 has dimension dim(L1) = 2 and volume vol(L1) = N3/2.
Since B1 is triangular, the volume of L1 is simply the (absolute) product of
the diagonal elements. From Minkowski’s bound (Theorem 2.3), we then know
that a smallest vector in L1 has a norm no larger than

√
2 vol(L1)1/2 =

√
2 N3/4.

Now, the norm of the target vector v satisfies ||v|| ≤ d(10N)1/2 since

‖v‖2 = (dN1/2)2 + (1 − ks)2 < d2N + k2s2 < d2N + k29N < 10d2N.

Here we used the fact that k < d and s < 3N1/2. A sufficient condition for v
to satisfy Minkowski’s bound is then given by

√
10 dN1/2 <

√
2 N3/4,

or more simply

d <
1√
5
N1/4.

The hope is that when the private exponent satisfies this bound that the
vector v is in fact a smallest vector in L1 and that all other vectors (except
−v) are much larger (i.e., we hope Assumption 2.6 holds for L1). When this
does hold, the vector v can be found using Gauss’s algorithm (Algorithm 2.1),
which finds smallest vectors in 2-dimensional lattices. Once the vector v is
found we can compute the vector x = (d,−k) from xB1 = v and thus compute
φ(N) = 1

k (ed − 1). The modulus is then easily factored once φ(N) is known.
Notice that we used the trivial equation dN1/2 = dN1/2 instead of simply
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using d = d. This allows us to maximize the volume of the lattice while
not changing the norm of the target vector v, and hence increase the bounds
obtained when forcing the vector v to satisfy Minkowski’s bound for the lattice.
It also balances the components in the target vector, which seems to be helpful
in these types of heuristic attacks.

For a 1024-bit modulus, this attack suggests that if

d <
1√
5
N1/4 ≈ N0.2489,

then RSA should be insecure (assuming Assumption 2.6 holds). In practice,
the attack works very well. Letting d = N δ, the following shows some ex-
perimental results of mounting the attack 1,000 times for different private
exponent sizes.

δ 0.245 0.246 0.247 0.248 0.249 0.250 0.251
success % 100 100 100 100 67.9 0.4 0.0

Alternatively, notice that reducing the key equation ed = 1 + k(N − s)
modulo N yields the congruence

ed + ks − 1 ≡ 0 (mod N).

We can linearize this modular equation by letting x = d and y = ks to obtain
the new linear modular equation

ex + y − 1 ≡ 0 (mod N).

Letting X = N δ and Y = 3N δ+1/2, we know this equation has solution
(x0, y0) = (d, ks) that satisfies |x0| ≤ X and |y0| ≤ Y . It follows that we can
(heuristically) solve for (x0, y0) whenever

XY ≤ N,

which is satisfied whenever δ < 1/4 − ε, for ε = logN (3) > 0. Of course,
the method to recover the solution (recall Section 2.6.1) is essentially the
heuristic method described above. Here, we simply took the integer equation,
converted it to a modular equation and then converted it back to an another
integer equation to actually solve it. However, it shows that Wiener’s bound
can be obtained by considering the key equation reduced modulo the RSA
modulus.

5.1.2.2 Provable Approach

The success of the heuristic attack is actually not a surprise. By approach-
ing the problem from a different perspective, May [162, Theorem 16] has
shown that (essentially) the same attack can be proven rigorously by impos-
ing a slight restriction on the RSA primes and decreasing the bound on the
private exponent by a small multiplicative constant. We restate his attack in
the following theorem.
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Theorem 5.2. Let N = pq be an RSA modulus with balanced primes sat-
isfying p + q < 3√

2
N1/2. Let (e, N) be a valid public key and let d be its

corresponding private exponent defined modulo φ(N). If the private exponent
satisfies

d < 1
3N1/4,

then the modulus can be factored in time polynomial in log(N).

In the derivation of this attack, May approaches the problem using Cop-
persmith’s techniques. Reducing the key equation ed = 1 + k(N − s) modulo
N gives

ed + ks − 1 ≡ 0 (mod N),

and so (x0, y0) = (d, ks − 1) is a (small) root of the polynomial

fN (x, y) = ex + y,

modulo N . That is, fN (d, ks−1) ≡ 0 (mod N). In order to break the instance
of RSA we only need to find the small roots of this polynomial modulo N .
Typically, this would involve using the heuristic extensions of Coppersmith’s
methods. That is, using lattice basis reduction to find two small normed bi-
variate polynomials that have the root (x0, y0) over the integers. If these poly-
nomials are also algebraically independent (which is where Assumption 2.15
is needed) then the root can be found. However, for this particular problem,
May has shown that (x0, y0) = (d, ks − 1) can always be computed with only
one small normed polynomial (found from the lattice reduction).

Using only the polynomial fN (x, y) = ex + y and the helper polynomial
f0(x, y) = Nx, a 2-dimensional lattice L2 is constructed from the coefficient
vectors of fN (xX, yY ) and f0(xX, yY ), where X and Y are bounds on |x0|
and |y0|, respectively. The basis matrix for the lattice is given by

B2 =
[

NX
eX Y

]
.

Using the conditions given in the theorem statement (in addition to k < d),
it follows that

|x0| = d <
1
3
N1/4

|y0| = |ks − 1| < ds < d(p + q) <
1√
2
N3/4,

and so the bounds can be defined as X = 1
3N1/4 and Y = 1√

2
N3/4.

Notice that all vectors in the lattice L2 correspond to coefficient vectors of
polynomials that have root (x0, y0) modulo N . Thus, if two small vectors can
be found whose norm satisfies Howgrave-Graham’s condition (Theorem 2.10),
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then these vectors correspond to the coefficient vectors of polynomials with
root (x0, y0) over the integers. The typical aim is to find two such vectors.

As it turns out for this particular situation, instead of having to find two
small normed polynomials only one is needed. In fact, May shows that if
(c0, c1)B2 = v is a shortest vector in L2 then

(d, ks − 1) = (|c1|, |c0N + c1e|).
Thus, the private exponent is revealed once a smallest vector is found (which
can be done efficiently with Gauss’s algorithm). With d known, ed−1 = kφ(N)
gives a multiple of φ(N) which can be used to factor the modulus. For full
details of the derivation we refer the reader to [162, §4.2].

Notice that all of these versions of Wiener’s attack (heuristic and provable)
are essentially the same. Each simply looks at the problem from a slightly
different starting point. The connection between Wiener’s original continued
fraction attack and these lattice-based attacks follows from the fact that com-
puting a continued fraction expansion and computing a Gaussian-reduced ba-
sis are closely related.

5.2 Boneh and Durfee’s Lattice Attacks

Two of the lattice-based versions of Wiener’s attack from the previous
section have demonstrated that Wiener’s attack can be viewed as trying to
solve the key equation reduced modulo N . It was shown by Boneh and Dur-
fee [28, 29], that a much stronger attack can be obtained by trying to solve
the key equation reduced modulo the public exponent e. In particular, they
show that solving

−k(N − s) ≡ 1 (mod e),

for the unknowns k and s leads to a heuristic attack on RSA with private
exponents d < N0.292. This is the strongest known attack on small private
exponent RSA with balanced primes that is not also a partial key exposure
attack (see Chapter 6) or does not require special properties of the primes.

For all of the lattice-based attacks shown in this section, we assume that
the primes are balanced and that the public and private exponents are defined
modulo φ(N). We show the full derivation of Boneh and Durfee’s attacks on
arbitrary sized public exponent and also outline Blömer and May’s variant.

5.2.1 Lattice Attack

We restate Boneh and Durfee’s lattice-based attack on small private expo-
nent RSA with arbitrary public exponent ([28, 29, §6]) in the following attack.
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Since the result relies on unproven assumptions, we can only state it as an
attack.

Attack 5.3. For every ε > 0, there exists an n0 such for every n > n0 the
following holds: Let N = pq be an n-bit RSA modulus with balanced primes,
let (e, N) be a valid public key and let d be its corresponding private exponent
defined modulo φ(N). Let e = Nα and d = N δ. Given the public key, if the
private exponent satisfies

δ <
7
6
− 1

3
√

1 + 6α − ε,

then the modulus N can be factored in time polynomial in log(N), provided
that Assumptions 2.15 and 2.14 hold.

Justification: Reducing the key equation ed = 1 + k(N − s) modulo e gives

kN − ks + 1 ≡ 0 (mod e),

where k and s are known. This motivates looking for small roots of the bivari-
ate polynomial fe(x, y) ∈ Z[x, y] given by

fe(x, y) = Nx + xy + 1,

since (x0, y0) = (k,−s) is a root of fe(x, y) modulo e. Letting e = Nα and
d = N δ, notice that the desired root satisfies

|x0| = k =
ed − 1
φ(N)

<
ed
1
2N

= 2Nα+δ−1

|y0| = | − s| = p + q − 1 < 3N1/2,

(5.7)

where we have also used φ(N) > 1
2N and s < 3N1/2 because the primes are

balanced. We can then define the bounds X = 2Nα+δ−1 and Y = 3N1/2 for x0

and y0, respectively. Using the polynomial fe(x, y) and the bounds X and Y ,
we next construct a lattice whose every element corresponds to a polynomial
with root (x0, y0) modulo some power of e.

For some fixed integer m > 0, define the polynomials

gi,k(x, y) := xifk
e (x, y)em−k

hj,k(x, y) := yjfk
e (x, y)em−k.

(5.8)

The gi,k(x, y) are referred to as x-shifts and the hj,k(x, y) are referred to as
y-shifts because they multiply, or shift, the base polynomial fe(x, y) by powers
of x and y, respectively. With this construction, notice that for any i, j ≥ 0
and 0 ≤ k ≤ m, the root (x0, y0) of fe(x, y) modulo e is also a root of gi,k(x, y)
and hj,k(x, y) modulo em. That is,

fe(x0, y0) ≡ 0 (mod e) −→
{

gi,k(x0, y0) ≡ 0 (mod em)
hj,k(x0, y0) ≡ 0 (mod em),

(5.9)
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for the valid i, j, k. In fact, this holds for all roots of fe(x, y) modulo e. Us-
ing the coefficient vectors of the gi,k(xX, yY ) and hj,k(xX, yY ) polynomials,
where X and Y are the bounds on x0 and y0 defined earlier, we can construct
a basis matrix B for a lattice L. Each vector in this lattice is an integer linear
combination of the coefficient vectors of the gi,kj(xX, yY ) and hj,k(xX, yY ),
and so each vector is the coefficient vector of some polynomial, f(xX, yY ),
that is an integer linear combination of the gi,kj(xX, yY ) and hj,k(xX, yY ).
It then follows from (5.9) that each of these polynomials f(x, y) satisfy

fe(x0, y0) ≡ 0 (mod e) −→ f(x0, y0) ≡ 0 (mod em).

That is, each vector v in the lattice corresponds to a polynomial f(x, y) that
has root (x0, y0) modulo em.

The specific construction for the basis matrix that Boneh and Durfee use,
which we will denote by BBD, consists of the coefficient vectors of

{gi,k(xX, yY ) | 0 ≤ k ≤ m, 0 ≤ i ≤ m − k}
{hj,k(xX, yY ) | 0 ≤ k ≤ m, 1 ≤ j ≤ t}, (5.10)

for some integer t > 0. These are the basis vectors for the lattice LBD. There
are ω = (m + 1)(m + 2)/2 + t(m + 1) basis vectors in total and they are all
pairwise linearly independent. Thus, the lattice has dimension dim(LBD) = ω.
The rows and columns are ordered so that the basis matrix is lower triangular
as follows. For the rows, from top to bottom, first the x-shift polynomials
gi,k(xX, yY ) appear in increasing values of � = i + k from � = 0, . . . , m. For
each value of �, these polynomials are further ordered in increasing values of
k = 0, . . . , �. Next the y-shift polynomials hj,k(xX, yY ) appear with increas-
ing values of j = 1 . . . , t. For each value of j, these polynomials are further
ordered in increasing values of k = 0, . . . , m. With this ordering of the basis
vectors, each new basis vector (from top to bottom) introduces exactly one
new monomial that was not present in any of the basis vectors preceding it.
The columns are then ordered, from left to right, so that column n corre-
sponds to the new monomial that row n has introduced. In particular, the
first ωx = (m + 1)(m + 2)/2 columns correspond to the monomials xi+kyk.
They appear in increasing values of i = 0, . . . , m. For each value of i, they are
further organized in increasing values of k = 0, . . . , i. These columns corre-
spond to all the monomials found in the x-shift polynomials. The remaining
ωy = t(m + 1) columns correspond to the monomials xkyj+k. They appear in
increasing values of j = 1, . . . , t. For each value of j, they are further ordered
in increasing values of k = 0, . . . , m. These columns correspond to the mono-
mials that appear only in the y-shift polynomials. In Figure 5.1, we illustrate
the basis matrix BBD with this ordering when m = 2 and t = 1.

With this ordering of the basis matrix the diagonal elements are given
by Xi+kY kem−k for the x-shift polynomials and XkY j+kem−k for the y-shift
polynomials. Since vol(LBD) = |det(BBD)|, and the determinant of BBD is
simply the product of its diagonal elements, the volume of LBD is easily
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FIGURE 5.1: Boneh and Durfee’s basis matrix BBD with parameters m = 2
and t = 2.
(J. H. Silverman (Ed.): CaLC 2001, LNCS 2146, pp. 4-19, 2001. c© Springer-Verlag

Berlin Heidelberg 2001. Used with permission.)

computed as

vol(LBD) =

(
m∏

k=0

m−k∏
i=0

Xi+kY kem−k

)⎛⎝ m∏
k=0

t∏
j=1

XkY j+kem−k

⎞
⎠ (5.11)

= (eX)m(m+1)(m+2)/3+tm(m+1)/2Y m(m+1)(m+2)/6+t(m+1)(m+t+1)/2,

where the first double product corresponds to the contributions from the x-
shift polynomials (there are ωx of these) and the second double product corre-
sponds to contributions from the y-shift polynomials (there are ωy of these).

Computing an LLL-reduced basis for the lattice LBD, and recalling The-
orem 2.4, the two smallest reduced basis vectors correspond to two linearly
independent polynomials p1(x, y) and p2(x, y) satisfying

‖p1(xX, yY )‖ ≤ ‖p2(xX, yY )‖ ≤ 2ω/4vol(L)1/(ω−1).

If the larger of these polynomials also satisfies

‖p2(xX, yY )‖ < ω−1/2em,

then from Howgrave-Graham’s result (Theorem 2.10), applied to bivariate
polynomials, we know that (x0, y0) is a root of p1(x, y) and p2(x, y) over the
integers. Clearly, a sufficient condition for this occur is given by

2ω/4vol(L)1/(ω−1) < ω−1/2em,

or more simply

vol(L) < 2−ω(ω−1)/4ω−(ω−1)/2em(ω−1) = γem(ω−1), (5.12)

where γ = 2−ω(ω−1)/4ω−(ω−1)/2 is a constant (once m and t are fixed). This
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is an enabling condition for the attack. Whenever the volume of LBD satisfies
this inequality the polynomials p1(x, y) and p2(x, y) both have (x0, y0) as a
root over the integers. If these polynomials are also algebraically independent,
we can compute the resultant of p1(x, y) and p2(x, y) with respect to the
variable x to obtain a univariate polynomial p1,2(y) that has root y0 = −s over
the integers. Standard root finding techniques (for univariate polynomials over
the integers) can be used to obtain y0. With s known, we can then compute
φ(N) = N − s and easily factor the modulus. Note that this holds for all
roots (x′

0, y
′
0) of fe(x, y) modulo e that satisfy |x′

0| < X and |y′
0| < Y . We will

assume that there is only one solution (Assumption 2.14).
While this enabling condition is perfectly valid it does not offer much

insight into the success of the attack based on any of the input parameters such
as α or δ. In order to derive a more useful enabling condition, the condition
in the attack statement in particular, we need to make some assumptions and
simplifications.

First, we ignore the factor γ = 2−ω(ω−1)/4ω−(ω−1)/2 in (5.12). This is a
fixed constant once m and t are chosen and can be made arbitrarily negligible
by considering large enough N (and hence large enough e).

Next, we substitute X = 2Nα+δ−1, Y = 3N1/2 and e = Nα into the
enabling condition and let t = τm for some real τ > 0. Just as with γ, we
ignore the small constant factors in X and Y . The enabling condition (5.12)
then becomes

N (τ2/4+(α+δ/2−1/4)τ+2α/3+δ/3−1/4)m3+o(m3) < N (ατ+α/2)m3+o(m3),

where we have only included the contributions from the m3 terms. For large
enough m, which may require considering larger N so that γ is still insignif-
icant, we can make the o(m3) contributions arbitrarily small. Ignoring these
lower order terms, and looking only at the coefficients of the m3 terms, the
condition on the exponents can be simplified as

1
4
τ2 +

(
δ

2
− 1

4

)
τ +

α

6
+

δ

3
− 1

4
< 0.

Notice that for any values of α and δ the left-hand side of this inequality is
minimized when τ is given by τmin = 1

2 − δ. Substituting this value for τ back
into the inequality and rearranging yields

−1
4
δ2 +

7
12

δ +
α

6
− 5

16
< 0.

Solving this inequality for δ then yields the new enabling condition

δ <
7
6
− 1

3
√

1 + 6α − ε, (5.13)

where ε > 0 has been added to account for the ignored constants and neglected
lower order terms. This correction term can be made arbitrarily close to zero
by considering large enough N and m.
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Thus, for sufficiently large N , if the private exponent d = N δ satisfies the
enabling condition (5.13) then two polynomials with root (x0, y0) = (k,−s)
can be found. If these polynomials are algebraically independent, then y0 = −s
can be computed and used to factor the modulus (as described above). Since
all computations can be done in time polynomial in log(N), the result follows.
�

In a typical instance of small private exponent RSA the public exponent
will be roughly the same size as the modulus. Using the approximation α ≈ 1,
the enabling condition (5.13) in Attack 5.3 becomes

δ <
7
6
− 1

3

√
7 − ε ≈ 0.2847 − ε.

Thus, for sufficiently large moduli, RSA is considered to be insecure when a
private exponent satisfying this bound is used.

5.2.2 Sub-Lattice Attack

Boneh and Durfee show that the bound δ < 0.2847 in Attack 5.3 can
be improved (increased) by looking for small vectors in a specially chosen
sub-lattice of LBD. The motivation for the improvement is the observation
that some basis vectors in BBD contribute more to volume of the lattice than
others. That is, the diagonal element of some rows are much larger than others
(see for example Figure 5.1). From the general enabling condition

vol(LBD) < γem(ω−1),

the average contribution from each basis vector to the volume needs be smaller
than em(ω−1)/ω < em. Now, if some of the basis vectors with diagonal elements
exceeding em are removed from the basis matrix, the intuitive notion is that
the volume of the resulting lattice (a sub-lattice of LBD) will be decreased
and the bounds on δ in the final enabling condition will increase. This is the
basic idea of the improved attack. Note, however, that removing basis vectors
from the basis matrix results in a lattice that is not full rank and this makes
computing its volume non-trivial. Boneh and Durfee overcome this obstacle
by instead computing a bound on the volume using results from a special class
of matrices, called geometrically progressive matrices, which they introduce in
[28, 29]. A review of these matrices and their properties is given in Appendix B.

We restate their result, generalized for arbitrary public exponent size, in
the following attack.

Attack 5.4. For every ε > 0, there exists an N0 such that for every N > N0

the following holds: Let N = pq be an RSA modulus with balanced primes, let
e = Nα be a valid public exponent and let d = N δ be its corresponding private
exponent defined modulo φ(N). Given (e, N), if the private exponent satisfies

δ <
2 −√

2α

2
− ε,
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then the modulus N can be factored in time polynomial in log(N), provided
that Assumptions 2.15 and 2.14 hold.

Justification: Just as in Attack 5.3, we construct the basis matrix BBD

for some fixed m > 0 and t = (1 − 2δ)m using the bounds X = 2Nα+δ−1

and Y = 3N1/2. A new basis matrix B′ is then constructed by first letting
B′ = BBD and then removing every basis vector that corresponds to a y-shift
polynomial with a diagonal element greater than em. Let L′ be the lattice
generated by the new basis matrix B′. Since each basis vector in B′ is also a
basis vector in BBD, it follows that L′ is a sub-lattice of L. Therefore, every
vector in L′ is the coefficient vector of a polynomial with root (x0, y0) = (k,−s)
modulo em.

Computing an LLL-reduced basis for L′, we know from Theorem 2.4 that
we can find two linearly independent vectors that are the coefficient vectors
of two linearly independent polynomials f ′

1(x, y) and f ′
2(x, y) satisfying

‖f ′
1(xX, yY )‖ ≤ ‖f ′

2(xX, yY )‖ ≤ 2ω′/4vol(L′)1/(ω′−1),

where ω′ is the dimension of the lattice L′. When these polynomials satisfy
Howgrave-Graham’s bound

‖f ′
2(xX, yY )‖ < ω−1/2em,

then we know that f ′
1(x0, y0) = f ′

2(x0, y0) = 0, which is our desired result.
That is, (x0, y0) is a root of both polynomials over the integers. Notice that
this bound uses ω instead of ω′ since the polynomials will still have as many
as ω monomials in them. From the two inequalities above, it follows that a
sufficient condition for this to happen is given by

vol(L′) < 2−ω′(ω′−1)/4ω−(ω′−1)/2em(ω′−1) = γ′em(ω′−1),

where γ′ = 2−ω′(ω′−1)/4ω−(ω′−1)/2 is a constant once m is fixed. This is the
general enabling condition for the attack. If this condition is satisfied and if
the two polynomials obtained are also algebraically independent then we can
efficiently solve for y0 and factor the modulus just as in Attack 5.3.

To see that this general enabling condition leads to a stronger attack, we
compute bounds on vol(L) and ω′. In order to compute these bounds, we will
assume that N is sufficiently large so that constant factors (not depending on
N) can be ignored. To begin, we first recall the structure of the basis matrix
BBD. Let the dimension of BBD be written ω = ωx +ωy, where ωx and ωy are
the number of x-shift and y-shift polynomials used, respectively. Ordering the
columns and rows as described in Attack 5.3, we can write the basis matrix
as

BBD =
[ Mx 0

Myx My

]
,

where Mx is the ωx × ωx lower triangular sub-matrix of BBD corresponding
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to the x-shift polynomials, Myx is the ωy × ωx sub-matrix corresponding to
the first ωx columns of the y-shift polynomials, and My is the lower triangular
ωy × ωy sub-matrix that corresponds to the last ωy columns of the y-shifts.

Let B′ be the basis matrix with the selected y-shift polynomials removed.
This can then be written

B′ =
[ Mx 0

M′
yx M′

y

]
,

where M′
yx and M′

y are obtained from Myx and My be removing the ap-
propriate rows. Since Mx is full rank, there exists an unitary matrix U that
performs Gaussian elimination on Mx (using only the rows in Mx) and also
zeroes all of M′

yx (using all the rows in B′). That is, there exists a U such
that

UB′ =
[ D 0

0 M
]

,

where D is a diagonal matrix and M is an integer linear combination of only
the rows in M′

y. Since the matrix U is unitary (i.e., | det(U)| = 1) and since
the vectors in D and M are orthogonal, it follows that

| det(B′)| = | det(UB′)| = |det(D) det(M)| = | det(Mx) det(M′
y)|.

Computing det(Mx) is easy since the matrix Mx is triangular. In fact, it was
already computed as part of the volume computation of LBD (cf. (5.11)) and
is given by

det(Mx) =
m∏

k=0

m−k∏
i=0

Xi+kY kem−k.

Substituting X = 2Nα+δ−1, Y = 3N1/2 and e = Nα into the above yields

det(Mx) = N (2α/3+δ/3−1/4)m3+o(m3), (5.14)

where we have ignored the constant factors of X and Y .
Computing det(M′

y), in contrast, is non-trivial since the matrix M′
y is

not a square matrix. However, as shown in Appendix B, the matrix My is
geometrically progressive and a simple bound for det(M′

y) can be computed.
In particular, since M′

y is made of up the rows of My with diagonal elements
no greater then em, letting S = {(j, k) | XkY j+kem−k ≤ em}, we have

det(M′
y) < ((m + 1)t)|S|/2(1 + C)|S|2 ∏

(j,k)∈S

XkY j+kem−k, (5.15)

where C = m2m is a constant. That is, the determinant of M′
y is bounded

by a constant multiple of the product of all the diagonal elements in My
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that are also in M′
y. The set S is simply all of the (j, k) indices of the y-shift

polynomials with diagonal element no greater than em. Letting X = 2Nα+δ−1,
Y = 3N1/2 and e = Nα, notice that the set S consists of (j, k) pairs satisfying

N (α+δ−1)k+(j+k)/2+α(m−k) < Nαm,

when we ignore the constant factors of X and Y . Solving this for j and k, and
recalling that 1 ≤ j ≤ k and 0 ≤ k ≤ m, it follows that (j, k) ∈ S if and only
if j and k satisfy

1 ≤ j < (1 − 2δ)k ≤ �(1 − 2δ)k� ≤ �(1 − 2δ)m�.
Using this restriction for (j, k) ∈ S, the determinant bound (5.15) becomes

det(M′
y) ≤

m∏
k=2

(1−2δ)k�∏
j=1

XkY j+kem−k

≤ N (1−2δ)(2δ+6α−1)m3/12+o(m3),

(5.16)

where we have again ignored all constant factors not depending on N . No-
tice that since j ≥ 1 and δ > 0, we begin the outer sum with k = 2. This
restrictions on (j, k) pairs also lets us easily compute the size of the set S as

|S| =
m∑

k=2

�(1 − 2δ)k� =
1
2
(1 − 2δ)m2 + o(m2). (5.17)

Note that the size of the S is simply the number of rows in the matrix M′
y.

From the computation in (5.14) and the bound obtained in (5.16), it follows
that the volume of the lattice L′ satisfies

vol(L′) = | det(Mx) det(M′y)|
≤ N (−δ2/3+(2/3−α)δ+7α/6−1/3)m3+o(m3),

(5.18)

where we have ignored all the constant factors not depending on N . Also,
since the number of rows in Mx is ωx = (m + 1)(m + 2)/2 and the number of
rows in M′

y is |S|, as given in (5.17), the dimension of the lattice L′ is simply
ω′ = ωx + |S|. Expanding in terms of m we have

ω′ =
1
2
(m + 1)(m + 2) +

1
2
(1 − 2δ)m2 + o(m2) = (1 − δ)m2 + o(m2). (5.19)

Therefore, using (5.18) and (5.19), the general enabling condition for the at-
tack

vol(L′) < γ′em(ω′−1),

can be written as

N (−δ2/3−αδ+2δ/3−1/3+7α/6)m3+o(m3) < Nα(1−δ)m3+o(m3),
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where we have ignored all the constant factors that do not depend on N .
Looking only at the exponents of N and ignoring all o(m3) terms, this is
simplified to

−2δ2 + 4δ − 2 + α < 0. (5.20)

It follows, by solving for δ, that a sufficient condition for the general enabling
condition to hold is given by

δ <
2 −√

2α

2
− ε,

where ε > 0 is added to account for the ignored constants and lower order
terms. This correction term can be made arbitrarily small by considering
sufficiently large N and m.

Therefore, assuming that the polynomials obtained are algebraically inde-
pendent (Assumptions 2.15) and that there is only one solution (Assumption
2.14), if the enabling condition (5.20) is satisfied and N is sufficiently large,
the modulus N can be factored in time polynomial in log(N). �

In a typical instance of small private exponent RSA the public exponent
will be roughly the same size as the modulus. Using the approximation α ≈ 1
in Attack 5.4, we find that a sufficient condition for the attack becomes

δ <
2 −√

2
2

− ε ≈ 0.2929 − ε,

which is Boneh and Durfee’s original result [28, 29]. Thus, for sufficiently large
moduli, RSA is considered to be insecure when a private exponent satisfying
this bound is used. This is the strongest known attack on small private expo-
nent RSA.

5.2.3 Blömer and May’s Attack

In the preceding sub-lattice attack, Boneh and Durfee modify the basis
matrix BBD by removing some of its rows and look for small vectors in the
resulting lattice L′. The new lattice L′ is a sub-lattice of the original lattice
LBD and so all of its vectors are also in the original lattice (and hence corre-
spond to polynomials having the desired root (x0, y0) modulo em). The attack
is stronger than the original attack because the volume and dimension of the
sub-lattice L′ are such that the general enabling equation

vol(L′) < γ′em(ω′−1),

allows for larger bounds on the private exponent. In this way, Boneh and
Durfee derive the strongest known attack on small private RSA.

The same bound on the private exponent can also be derived using an
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attack developed by Blömer and May [20]. The attack is a variation of Boneh
and Durfee’s sub-lattice attack in which the basis matrix BBD is modified
by removing both rows and columns. Small vectors in this new lattice are
then used to construct small vectors in the original lattice LBD (and hence
correspond to polynomials having the desired root (x0, y0) modulo em). The
final enabling condition for this method depends on the volume and dimension
of the new lattice and on the relationship between small vectors in the new
lattice and their corresponding vectors in LBD. We outline the attack, as
described in [162, Chapter 7], below.

Beginning with the basis matrix BBD for some fixed m > 0 and t > 1
using some bounds X and Y (see Attack 5.3 for details), let

P = (p0, p1, . . . , pt),

be a strictly decreasing pattern (i.e., p0 > p1 > · · · > pt) of non-negative
integers. A new basis matrix, based on the pattern P , is constructed from
BBD as follows:

1. Remove all basis vectors corresponding to gi,k(xX, yY ) with i + k = �
for all 0 ≤ � ≤ m − p0. Thus, the only x-shift polynomials that remain
are those that have i + k > m − p0.

2. For each p�, where � = 1, . . . , t, remove all basis vectors corresponding
to ht−�+1,k(xX, yY ) for 0 ≤ k ≤ t − p�. Thus, for each j = 1, . . . , t, the
only y-shift polynomials remaining are the last pt−j+1.

3. For each basis vector that was removed above, the column associated
with the monomial of the diagonal element of that basis vector is also
removed. Thus, if row n is removed then column n is also removed.

The resulting basis matrix, denoted by BBM , is by construction a lower-
triangular full rank matrix. Note that unlike the sub-lattice used in Boneh
and Durfee’s method, the lattice LBM generated by BBM is, in general, not
a sub-lattice of LBD and vectors in LBM do not, in general, correspond to
polynomials with root (x0, y0) modulo em.

Small vectors in the lattice LBM are then found by computing an LLL-
reduced basis. Just as in the previous attacks, an enabling condition

vol(LBM ) < γ′′em(ω′′−1),

where ω′′ is the dimension of LBM and γ′′ is a constant not depending on N ,
which ensures that the smallest two reduced basis vectors b1 and b2 satisfy
the condition ‖b1‖ ≤ ‖b2‖ ≤ em, is easily derived.

Using the reduced vectors b1, b2 ∈ LBM new vectors b′1, b
′
2 ∈ LBD are

constructed. Let CBBM be the LLL-reduced basis computed for LBM . Here C is
a unitary matrix that transforms the basis matrix BBM into the LLL-reduced
basis. If c1 and c2 are the first two rows of C then notice that c1BBM = b1 and
c2BBM = b2. Also, given b1, b2 and BBM , we can solve for c1 and c2. Now,



Small Private Exponent Attacks 85

letting B′ be the basis matrix obtained after removing the rows but before
removing the columns from BBD (as described above), it is clear that B′ is the
basis matrix for some sub-lattice of LBD. It then follows that c1B′ = b′1 ∈ LBD

and c2B′ = b′2 ∈ LBD. So, given b1 and b2 (or c1 and c2), two vectors in LBD

can be constructed. Blömer and May refer to these vectors as reconstruction
vectors. Note that since each of these reconstruction vectors are in the lattice
LBD they each correspond to a polynomial having root (x0, y0) modulo em.

In addition, through a series of lemmata that exploit the specific structure
of the base polynomial, fe(x, y) = Nx + xy + 1, Blömer and May [20] and
May [162] show that these reconstruction polynomials are not significantly
larger than the basis vectors b1 and b2. In particular, they prove the following
([162, Theorem 72]).

Theorem 5.5. Let cBBM = v with ‖v‖ < em be a vector in LBM . Then the
reconstruction vector cB′ = v′ ∈ LBD satisfies ‖v′‖ < em + O

(
em

XY

)
.

It follows that, for sufficiently large N and m, the reconstruction vectors
b′1 and b′2 correspond to two polynomials p1(x, y) and p2(x, y) that satisfy
Howgrave-Graham’s bound (ignoring the small constants) and so each have
the root (x0, y0) = (k,−s) over the integers. If these polynomials are alge-
braically independent, and if fe(x, y) has only one small root modulo e, then
y0 can be computed and the modulus factored in time polynomial in log(N).

Explicit enabling conditions for this method can be easily derived by spec-
ifying the pattern P . Blömer and May offer some suggestions for optimizing
the choice of which basis vectors of BBD to keep and which to remove (in
order maximize the bounds on the private exponent). These include removing
as many x-shift polynomials as possible and keeping as many y-shift polyno-
mials, with diagonal element no greater then em, as possible. Since the pattern
P must be a strictly decreasing pattern, notice that these suggestions are con-
flicting. They also suggest minimizing the lattice dimension of LBD so that
the computational costs of mounting the attack in practice are lowered.

In Boneh and Durfee’s attack, the sub-lattice used is generated using the
pattern

PBD = (m + 1, p1, . . . , pt),

where pj is the number of basis vectors hj,k(xX, yY ) with diagonal elements
no larger then em. This pattern maximizes the number of y-shift polynomials
in the bass. Using this pattern, which was shown in [162, §7.4] to be a strictly
decreasing pattern, with the basis matrix BBD for some m ≥ 0 and t =
(1−2δ)m with the bounds X = 2Nα−δ+1 and Y = 3N1/2, Blömer and May re-
derive Boneh and Durfee’s bound. The basis matrix B′ is the same sub-lattice
used in Boneh and Durfee’s attack, the volume and dimension computations
are the same in both derivations (once low order terms and constants are
ignored) and the same enabling condition on the size of the private exponent
can be derived. For details of the case when the public exponent is roughly
the same size as the modulus see May [162, Theorem 79]. The generalization
to arbitrary public exponent is straightforward.
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Blömer and May also provide the details of their attack when using the
pattern

PBM = (t + 1, t, . . . , 2, 1),

which maximizes the number of x-shift polynomials used while still trying to
use as many y-shifts as possible. Their result, generalized for arbitrary public
exponent, is given in the following attack.

Attack 5.6. For every ε > 0, there exists an N0 such that for every N > N0

the following holds: Let N = pq be an RSA modulus with balanced primes, let
e = Nα be a valid public exponent and d = N δ be its corresponding private
exponent defined modulo φ(N). Given (e, N), if the private exponent satisfies

δ <
2
5
− 3

5
α +

1
5

√
4α2 − 2α + 4 − ε.

then N can be factored in time polynomial in log(N), provided that Assump-
tions 2.15 and 2.14 hold.

Justification: For some fixed m > 0 and t = τm ≥ 0, generate the basis
matrix BBM with the bounds X = 2Nα+δ−1 and Y = 3N1/2. Using the
pattern PBM = (t+1, t, . . . , 2, 1) to generate a basis matrix BBM , as described
above, it follows that the volume of the lattice LBM is given by

vol(BBM ) =

(
m∏

k=m−t

m−k∏
i=0

Xi+kY kem−k

)⎛⎝ t∏
j=1

m∏
k=m−j+1

XkY j+kem−k

⎞
⎠

=
(
Xτ2−3τ+6Y τ2+3e3

) 1
6 τm3+o(m3)

,

and the dimension of LBM is ω = (m+1)(t+1). Computing an LLL-reduced
basis for LBM , the two shortest basis vectors b1 and b2 will satisfy

‖b1‖ ≤ ‖b2‖ ≤ 2ω/4vol(LBM )1/(ω−1).

For sufficiently large N , it follows that if vol(LBM ) < em(ω−1), then the
vectors b1 and b1 both have norms bound by em and the reconstruction vectors
are also bound by em. Using Howgrave-Graham’s result (Theorem 2.10), the
polynomials corresponding to the reconstruction vectors each have the root
(x0, y0) = (k,−s) over the integers. If this is the only solution and if the
polynomials are algebraically independent then the modulus can be factored
in time polynomial in log(N) as described in the previous attacks.

All that remains is to derive the bounds on δ. Substituting X = 2Nα+δ−1,
Y = 3N1/2 and e = Nα into the inequality vol(LBM ) < em(ω−1) yields

N ((α+δ−1)(τ2−3τ+6)+ 1
2 (τ2+3)+3α) 1

6 τm3+o(m3) < Nατm3+o(m3),
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where we have ignored the constant factors in X and Y . Looking at only the
exponents, and simplifying, this is satisfied whenever

(α + δ − 1/2)τ2 − 3(α + δ − 1)τ + 3α + 6δ − 9/2 < 0.

Notice that left-hand side of this inequality is minimized (for any α + δ > 1)
when τ is equal to τmin = 3(α+δ−1)

2α+2δ−1 . Substituting this value back into the
inequality gives

3(α2 + 6αδ − 2α + 5δ2 − 4δ)
2(2α + 2δ − 1)

< 0,

which when solved for δ finally yields

δ <
2
5
− 3

5
α +

1
5

√
4α2 − 2α + 4 − ε,

where we have added ε > 0 to account for the ignored constants and low or-
der terms. This correction term can be made arbitrarily small by considering
sufficiently large N and m. �

In a typical instance of small private exponent RSA the public exponent
will be roughly the same size as the modulus. Using the approximation α ≈ 1
in Attack 5.6, we find that a sufficient condition for the attack becomes

δ <

√
6 − 1
5

− ε ≈ 0.2899 − ε,

which is Blömer and May’s original result [20].

5.3 Effectiveness of the Attacks

Wiener’s continued fraction attack is very efficient and is guaranteed to
work when the sufficient condition is met for any instance of RSA. For a
typical instance of RSA the attack works right up to the N1/4 bound.

Boneh and Durfee’s lattice-based attacks, as well as Blömer and May’s, on
the other hand, are heuristic attacks with bounds that are derived by assuming
that the RSA modulus is arbitrarily large. It is also implicitly assumed that the
attacks can be mounted with infinite computing power. In reality, of course,
the size of any instance of RSA and the computational capabilities of any
adversary are both finite. In addition, mounting the attack requires fixing the
parameters m and t. Thus, in practice, the correction term ε in the bounds
may be significant (compared to 0.2847, 0.2929 or 0.2899).

In Table 5.1, we illustrate the effectiveness of all three lattice-based at-
tacks mounted on random instances of RSA with a 1024-bit modulus. For
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several choices of small m and t, we list the dimension ω of the lattice used,
the experimental bound δexp, and the modified theoretical bound δ0 for each
attack. The value δexp is the largest size of private exponent, rounded up to
the nearest thousandth, that we could use to successfully mount the attack
in at least one of ten trials for that given private exponent size. It is not an
explicit bound for the attacks in practice (for the given lattice parameters) but
only the largest size of private exponent that we could break with our set of
experiments. The value δ0 is the theoretical bound for each attack re-derived

TABLE 5.1: Effectiveness of small private exponent attacks
Attack 5.3 Attack 5.4 Attack 5.6

(m, t) ω δexp δ0 ω δexp δ0 ω δexp δ0

(3, 1) 14 0.260 0.111 11 0.260 0.125 8 0.261 0.116
(4, 2) 25 0.265 0.136 17 0.265 0.178 15 0.265 0.180
(5, 2) 33 0.269 0.176 25 0.269 0.203 18 0.268 0.200
(5, 3) 39 0.269 0.141 25 0.269 0.196 24 0.270 0.209
(6, 2) 42 0.272 0.205 34 0.272 0.216 21 0.271 0.212
(6, 3) 49 0.272 0.179 34 0.272 0.209 28 0.273 0.224
(7, 3) 60 0.274 0.204 45 0.274 0.222 32 0.273 0.233
(7, 4) 68 0.274 0.174 45 0.274 0.207 40 0.274 0.237

without making any assumptions on the size of N or m (i.e., all the constants
and low order terms are left in the computation). Thus, δ0 is a sufficient con-
dition on the size of the private exponent for the attack to succeed for a given
choice of m and t for 1024-bit moduli. The computation of this bound follows
from the derivations of the attacks and is straightforward once m and t are
fixed.

For every (m, t) pair in the table, all three lattice-based attacks were
mounted on 10 random instances of RSA with a 1024-bit modulus and small
private exponent of a given size. If at least one instance of RSA was broken the
size of the private exponent was incremented by a small amount and the pro-
cess repeated until none of the instances could be broken. The choice of t for
a given m was made to roughly satisfy the optimal τ values as determined in
asymptotic derivation of the bounds in Attacks 5.4 and 5.6. We make several
general observations from the data.

1. All of the attacks, using even small lattice parameters, can break in-
stances of RSA with private exponents exceeding Wiener’s bound N0.25.

2. All of the attacks are significantly stronger than their enabling conditions
(the bounds δ0) suggest for the specific lattice parameters used.

3. All of the attacks perform roughly the same for a given m and t choice.

4. For the lattice parameters chosen, Assumptions 2.15 and 2.14 hold well.

While the data shows that all three attacks perform about equally as well
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as each other, for a given choice of m and t, the runtimes of the attacks vary
significantly. Both of Boneh and Durfee’s attacks have roughly the same run-
time and this varied from 10 to 30 times greater than the runtime of Blömer
and May’s attack. For such small lattice parameters, m and t, the compu-
tations in all the attacks are dominated by computing a reduced basis and
computing the resultant of the two polynomials. The resultant computations
require roughly the same time for all three attacks since the polynomials used
have the same monomial set for each attack (defined the polynomials used
to generate BBD). Since the lattice dimension for Blömer and May’s attack
is significantly smaller than the dimension for Boneh and Durfee’s attacks,
it is expected that the runtime is also significantly smaller. As the lattice
parameters become larger, however, the resultant computation becomes com-
putationally dominant and all three attacks will perform (in terms of both
bounds and time) about the same.

Based on the experimental evidence it is clear that the lattice-based at-
tacks do work well in practice and can break instances of RSA with private
exponents significantly greater than Wiener’s attack. While they do not reach
their (theoretical) asymptotic bounds with such small lattice parameters they
do illustrate that care should be taken when using RSA with a small private
exponent. For a 1024-bit modulus, instances of RSA with private exponents
δ = 0.274 have also been broken by Durfee [70] (using lattice parameters
m = 7, t = 3). Using a different lattice construction intended to attack multi-
power RSA (see Chapter 10), Itoh et al. [116] break an instance with private
exponent δ = 0.275 with a lattice of dimension 117. For some experimental
data for other modulus sizes, see Boneh and Durfee [28, 29], Durfee [70] and
Blömer and May [20].

5.4 Additional Notes

Wiener’s continued fraction attack [249] and Boneh and Durfee’s lattice
based attacks [29] are both seminal works in the cryptanalysis of RSA. A
significant amount of research has been inspired from each of these works.

Most of the attacks in this chapter are stated for balanced primes.
When the difference between the primes is also small, it has been shown
by de Weger [61], that these attacks become even stronger. In particular, de
Weger shows that both Wiener’s attack and Boneh and Durfee’s attacks can
be improved when N1/4 < |p−q| < N1/2. When the difference is smaller than
N1/4, the modulus can be efficiently factored by a result of Fermat (see [61]
for more detail). Similarly, Maitra and Sarkar [154] have shown that Wiener’s
attack can be modified when |2q−p| < N1/2 to obtain stronger results. These
attacks correspond to when the RSA primes have too many most significant
bits in common (or when 2q and p have too many bits in common).
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When the RSA primes have some of their least significant bits in common,
the small private exponent attacks also become stronger. This is investigated
by Zhao and Qi [257], Sun et al. [237] and Sun et al. [235]. Interestingly, one
of the partial key exposure attacks in the next chapter becomes less effective
when the primes share some least significant bits (Attack 6.14 in Section 6.3.3),
as shown by Steinfeld and Zheng [230, 231].

§5.2 The lattice-based attacks by Boneh and Durfee are some the earli-
est heuristic extensions of Coppersmith’s methods (see also Jutla [127] and
Bleichenbacher [17]). This was the first extension in which the bounds from
Coppersmith’s original methods were significantly improved (by optimizing
the lattice parameters for the δ < 0.2847 result) and the first in which sub-
lattices were used to further improve bounds.

Boneh and Durfee motivate their use of Coppersmith’s methods by in-
troducing the so-called small inverse problem, which is defined as follows.
Given two integers N and e, the small inverse problem is to find an integer
close to N such that it’s inverse modulo e is small, where the exact meaning
of close and small is specified in some way. This problem relates to RSA in
the following way. If the key equation ed = 1 + k(N − s) is reduced modulo e,
we have

−k(N − s) ≡ 1 (mod e),

where k and s are known. Thus, we look for a number close to N (given
by N − s) whose inverse modulo e (given by −k) is small. For small private
exponent RSA with balanced primes and full public exponent, we define close
by specifying that |s| < 3N1/2 and small by |k| < d = N δ.

Boneh and Durfee argue that the small inverse problem (from RSA in-
stances) has a unique solution whenever d < N1/2. Thus, it is suggested that
the true bound for small private exponent RSA is N0.5 and not N0.2929. An
open problem in RSA is to find an attack on RSA with private exponents up
to N1/2.



Chapter 6

Partial Key Exposure Attacks

All of the attacks in this chapter use some information about the private key,
that is generally assumed to be unknown, to factor the modulus. For example,
an adversary might be given some number of bits of the private exponent or of
one of the primes in the modulus. The attacks show the importance of keeping
the bits of the private key concealed.

In general, we focus on the situation when some of the most or least sig-
nificant bits of the private exponent or one of the primes in the modulus is
known. Let 0 ≤ ε ≤ 1 be a fraction of known bits. When the ε most significant
bits of a quantity x is known we assume that we know x̂ such that x = x̂+x0,
where the unknown x0 satisfies |x0| = |x − x̂| < x1−ε. For the least signif-
icant bits, we use a more relaxed notion introduced by Boneh, Durfee and
Frankel [30, 31]. When the ε least significant bits of x are known, we assume
that we know x̃ and r ≥ |xε| such that x = x0r + x̃, where |x̃| < r and the
unknown x0 satisfies

|x0| =
∣∣∣∣x − x̃

r

∣∣∣∣ < ∣∣∣xr
∣∣∣ < x1−ε.

When r = 2� then x̃ corresponds to the usual notion of being the � least
significant bits of x. That is, the � least significant bits of x and x̃, in the
binary representation, are the same.

6.1 Factoring with a Hint

It was shown by Coppersmith [50], that an RSA modulus with balanced
primes could be factored given only 1/2 of the most significant bits of one of
the primes. It was later shown by Boneh, Durfee and Frankel [30] that 1/2 of
the least significant bits of one of the primes was also sufficient. We state the
combined results in the following theorem.

Theorem 6.1. Let N = pq be an RSA modulus with balanced primes. If at
least 1/2 of the most or least significant bits of one of the primes is known,
then N can be factored in time polynomial in log(N).

91
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We give a proof using Coppersmith’s method for finding small roots of
univariate modular polynomials (Theorem 2.8). Let f(x) be a monic degree
one univariate polynomial and let N be an integer with unknown factorization
and unknown factor b > Nβ . Recall that all roots x0 of f(x) modulo b can be
recovered in polynomial time provided that |x0| < cNβ2

, where c is any small
constant.

Proof: Since the RSA primes are balanced, we know that

1
2N1/2 < p, q < 2N1/2,

where we have relaxed the ordering of p and q. When given the most or least
significant bits of one of the primes in the modulus, the idea of the attack is to
construct a univariate polynomial (monic with degree one) that has a known
small root which reveals the remaining unknown bits of that prime. Once this
small root is computed, the factorization of the modulus is exposed.

Let’s first assume that we know at least 1/2 of the most significant bits of
the prime p. That is, we know p̂ such that p = p̂ + p0, where the unknown p0

satisfies

|p0| = |p − p̂| < p1/2 <
√

2N1/4.

Notice that p0 is a root, modulo p, of the monic univariate polynomial

fmsb(x) = x + p̂,

since fmsb(p0) = p0 + p̂ = p ≡ 0 (mod p). In fact, because fmsb(x) is monic
and linear, every root of the polynomial modulo p is given by p0+αp, for some
integer α. Therefore, p0 is the only root that is bound by

√
2N1/4. Letting

β = 1/2 − logN (2) and c = 2
√

2, notice that the prime p satisfies

p >
1
2
N1/2 = N1/2−logN (2) = Nβ ,

and that the desired root satisfies

|p0| <
√

2N1/4 =
2
√

2
2

N1/4 = 2
√

2N1/4−logN (2)

< 2
√

2N1/4−logN (2)+log2
N (2) = 2

√
2N (1/2−logN (2))2 = cNβ2

.

From Theorem 2.8, with c and β as defined above, it follows that we can
compute the root p0, and hence easily factor the modulus since p = p0 + p̂, in
time polynomial in log(N).

Next, assume that we know at least 1/2 of the least significant bits of the
prime q. That is, we assume that we know q̃ and r such that q = q0r + q̃,
where 0 ≤ q̃ < r, q1/2 < r < q, and the unknown q0 satisfies

|q0| =
∣∣∣∣q − q̃

r

∣∣∣∣ ≤ ∣∣∣qr
∣∣∣ < q1/2 < 2N1/4.
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When r is a power of 2 then q̃ corresponds to the actual least significant bits
of q. Letting R = r−1 mod N , so that rR = 1 + kN for some integer k, notice
that the monic univariate polynomial

flsb(x) = x + q̃R.

has root q0 modulo the prime q. To see this, observe that

rflsb(q0) = q0r + q̃Rr = q0r + q̃ + q̃kN = q + q̃kpq ≡ 0 (mod q).

Since there are no zero divisors modulo the prime q and since q1/2 < r < q
implies that r �≡ 0 (mod q), it follows that flsb(q0) ≡ 0 (mod q). Just as with
the previous polynomial, because flsb(x) is monic and linear, the root q0 can
be the only root modulo q that is smaller than

√
2N1/4. Since the bound on

the root and the divisor of N (the prime q) are exactly the same as in the
previous case, it follows from Theorem 2.8, with c and β defined exactly the
same, that we can compute the root q0 in time polynomial in log(N). Since
q = q0r + q̃, finding q0 immediately exposes the factorization of the modulus.

Because there was no ordering imposed on the primes p and q, the above
arguments hold given the 1/2 most or least significant bits of any one of the
primes and so the result follows. �

While the result, as stated above, requires that at least 1/2 of the most
or least significant bits of one of the primes be known, the bound can be
relaxed to accommodate a slightly smaller fraction of bits. This follows from
the statement of Theorem 2.8, since (in this case) the unknown part of the
prime can be recovered provided that it is smaller than cN1/4. The constant
c allows a smaller fraction of bits to be known at the expense of increased
runtime. If 1/2 − ε bits are known and ε ∈ O(log(log(N))) then the overall
runtime will still be polynomial in log(N). Alternatively, we could also perform
an exhaustive search on the missing ε bits and try to factor the modulus of
each candidate for the 1/2 known bits until the modulus is factored. Using
either technique, it follows that if about 1/2 of the most or least significant bits
of one of the primes are known then the modulus can be factored efficiently.

6.2 Partially Known Private Exponent: MSBs

In this section, we assume that the adversary knows some number of the
most significant bits of the private exponent d = Nβ . In particular, for a given
public key (e, N), we assume that the adversary knows d̂ such that

|d − d̂| < N δ,
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FIGURE 6.1: Theoretical bounds for partial key exposure attacks with
known most significant bits.
(R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 371-386, 2005. c© Interna-

tional Association for Cryptologic Research 2005. Used with permission.)

for some 0 ≤ δ ≤ β. We group the attacks based on the size of the public and
private exponents. We begin with some general results for arbitrary exponents
and then proceed with the main attacks when one of the exponents is full sized.
The best known attacks when one of the exponents is full sized are summarized
in Figure 6.1.

6.2.1 Arbitrary Exponents

We begin with two partial key exposure attacks on RSA with arbitrary
sized public and private exponents. These attacks are simple generalizations
of the results of Ernst, Jochemsz, May and de Weger [75].

Attack 6.2. For every ε > 0 there exists an n0 such that for every n > n0 the
following holds: Let N be an RSA modulus with balanced primes, let e = Nα be
a valid public exponent and let d = Nβ be its corresponding private exponent
defined modulo φ(N). Given the public key (e, N) and d̂ satisfying |d−d̂| < Nδ,
if δ < 1/2 and

δ ≤ 5
6
− 1

3

√
6α + 6β − 5 − ε, (6.1)

then the modulus can be factored in time polynomial in n, provided that As-
sumptions 2.15 and 2.14 hold.

Justification: Letting d = d̂ + d0, we start with the key equation written as

e(d̂ + d0) − k(N − s) − 1 = 0,
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where d0, k and s are the only unknowns. This suggests looking for roots of
the polynomial

f(x, y, z) = ex − Ny + yz + ed̂ − 1,

since (x0, y0, z0) = (d0, k, s) is a root of f(x, y, z) over the integers. Defining
X = Nδ, Y = 2Nα+β−1 and Z = 3N1/2 notice that

|x0| = |d0| = |d̂ − d| < Nδ = X

|y0| = |k| =
ed − 1
φ(N)

<
2ed

N
< 2Nα+β−1 = Y

|z0| = |s| < 3N1/2 = Z,

and that W = ‖f(xX, yY, zZ)‖∞ ≥ 2Nα+β since

W = max{eX, NY, Y Z, ed̂ − 1} ≥ NY = 2Nα+β .

For sufficiently large N , we know from Theorem 2.13 that Coppersmith’s
method will find two linearly independent polynomials, each algebraically in-
dependent with f(x, y, z), with root (x0, y0, z0) over the integers provided that
the enabling condition

X1+3τY 3+3τZ1+3τ+3τ2
< W 1+3τ ,

for any τ > 0, is satisfied. Substituting the values for X, Y , Z and W , this
enabling condition reduces to

3τ2 + 3(2δ − 1)τ + 2δ + 4α + 4β − 5 < 0,

when looking at the exponents of N and ignoring all small constants that do
not depend on N . Notice that the left-hand side of this inequality is minimized,
for any values of α, β and δ, when τ is given by τmin = 1/2 − δ. Using this
optimal value for τ the enabling condition is simply

−3
2
δ2 +

5
2
δ − 23

8
+ 2α + 2β < 0,

where we also require δ < 1/2 so that τmin > 0. Solving this inequality for δ
then yields

δ ≤ 5
6

+ −1
3

√
6α + 6β − 5 − ε,

where ε > 0 has been added to account for any ignored constants and lower
order terms (implicitly ignored in Theorem 2.13). Assuming that the two poly-
nomials obtained are algebraically independent (Assumption 2.15) and that
there is only one root of f(x, y, z) bound by X, Y and Z (Assumption 2.14),
then we can compute the root (x0, y0, z0) = (d0, k, s). Given z0 = s we can
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compute φ(N) = N − s and easily factor the modulus. Since all computations
can be done in time polynomial in log(N), the result follows. �

The second attack follows the same idea as the first except that in addition
to using the most significant bits of the private exponent it also uses the most
significant bits of the constant k in the key equation. In particular, let N
be an RSA modulus, e = Nα be a valid public exponent and d = Nβ be
its corresponding private exponent defined modulo φ(N). Given d̂, such that
|d − d̂| < N δ for some 0 < δ < β, then k̂ given by

k̂ =

⌈
ed̂ − 1

N

⌋
=

ed̂ − 1
N

+ ε, (6.2)

for some |ε| ≤ 1/2, reveals some of the most significant bits of k. In particular,
notice that∣∣∣k − k̂

∣∣∣ =
∣∣∣∣∣ed − 1
φ(N)

−
⌈

ed̂ − 1
N

⌋∣∣∣∣∣ =
∣∣∣∣∣ed − 1
φ(N)

− ed̂ − 1
N

+ ε

∣∣∣∣∣
=

∣∣∣∣∣N(ed − 1)
Nφ(N)

− φ(N)(ed̂ − 1)
Nφ(N)

+ ε

∣∣∣∣∣ =
∣∣∣∣∣Ne(d − d̂)

Nφ(N)
+

s(ed̂ − 1)
Nφ(N)

+ ε

∣∣∣∣∣
<

∣∣∣∣∣e(d − d̂)
φ(N)

∣∣∣∣∣+
∣∣∣∣∣ sed̂

Nφ(N)

∣∣∣∣∣+ 1
2
. (6.3)

Since e < φ(N) and d̂ < N , it follows that k̂ always satisfies

∣∣∣k − k̂
∣∣∣ <
∣∣∣∣∣e(d − d̂)

φ(N)

∣∣∣∣∣+
∣∣∣∣∣ sed̂

Nφ(N)

∣∣∣∣∣+ 1
2

< Nδ + 3N1/2 +
1
2
, (6.4)

although better bounds can be obtained depending on the actual RSA param-
eters. Using knowledge of both d̂ and k̂ results in a stronger attack for certain
sizes of public and private exponents. The result is given in the following
attack.

Attack 6.3. For every ε > 0 there exists an n0 such that for every n > n0 the
following holds: Let N be an RSA modulus with balanced primes, let e = Nα

be a valid public exponent and let d = Nβ be its corresponding private key.
Given the public key (e, N) and d̂ satisfying |d − d̂| ≤ N δ, if either of

1. δ ≥ β − 1/2, δ > 1 − α, δ < (3 − 2α)/4 and

β − 1
2
≤ δ ≤ 3 + 4α − 4α2

16α
− ε, (6.5)

2. δ ≤ β − 1/2, δ < 2 − α − β, α + β > 3/2 and

δ ≤ 1
3
(α + β) − 1

3

√
(2α + 2β − 3)(2α + 2β) − ε, (6.6)
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are satisfied then the modulus can be factored in time polynomial in n, provided
that Assumptions 2.15 and 2.14 hold.

Justification: Letting k̂ = (ed̂−1)/N�, notice that the key equation can be
written

e(d̂ + d0) − (k̂ + k0)(N − s) − 1 = 0,

where d0 = d − d̂, k0 = k − k̂ and s are the only unknowns. This suggests
looking for small roots of the polynomial

g(x, y, z) = ex − Ny + k̂z + yz + (ed̂ − k̂N − 1) ∈ Z[x, y, z],

since (x0, y0, z0) = (d0, k0, s) it a root of g(x, y, z) over the integers. Defining
X = Nδ, Y = 15Nγ and Z = 3N1/2, notice that

|x0| = |d0| = |d − d̂| < Nδ = X

|y0| = |k0| <

∣∣∣∣∣e(d − d̂)
φ(N)

∣∣∣∣∣+
∣∣∣∣∣ sed̂

Nφ(N)

∣∣∣∣∣+ 1
2

< 2Nα+δ−1 + 12Nα+β−3/2 +
1
2

< max{15Nα+δ−1, 15Nα+β−3/2} = Y

|z0| = |s| < 3N1/2 = Z,

when we let γ = max{α + δ − 1, α + β − 3/2}. The bound for y0 follows from
(6.3) using 2φ(N) > N , |s| < 3N1/2, and d̂ < 2d < 2Nβ . With these bounds
notice that W = ‖g(xX, yY, zZ)‖∞ satisfies

W = max{eX, NY, k̂Y, Y Z, |ed̂ − k̂N − 1|} ≥ NY = 15Nγ+1.

It then follows from Theorem 2.13, that, for sufficiently large N , Copper-
smith’s method will find two linearly independent polynomials, each alge-
braically independent with g(x, y, z), with root (x0, y0, z0) over the integers
provided that the enabling condition

X2+3τY 3+6τ+3τ2
Z3+3τ < W 2+3τ , (6.7)

for any τ > 0, is satisfied. Substituting the values for X, Y , Z and W , this
enabling condition reduces to

3γτ2 + 3(γ + δ − 1/2)τ + γ + 2δ − 1/2 < 0,

when looking at the exponents of N and ignoring all small constants that do
not depend on N . Whenever γ > 0, the left-hand side of this inequality is
minimized when τ is given by

τmin =
1 − 2γ − 2δ

4γ
.
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Replacing τ with τmin, it follows that the enabling condition is satisfied when

4γ2 + 4γ + 8δγ − 3 + 12δ − 12δ2 < 0. (6.8)

There are two cases to consider. First, let δ ≥ β − 1/2 so that γ = α + δ − 1.
Solving (6.8) for δ, with this value of γ, yields

δ ≤ 3 + 4α − 4α2

16α
− ε,

where ε > 0 has been added to account for ignored constants and lower order
terms (implicitly ignored in the original enabling condition (6.7)). For this
bound, to ensure that τmin is the optimal choice for τ , the condition γ > 0
requires that α + δ − 1 > 0. Also, since τmin > 0 must hold, it follows that
δ < (3−2α)/4. This shows the first bound, (6.5), along with all of its additional
requirements.

Next let δ ≤ β− 1/2 so that γ = α+β− 3/2. Solving (6.8) for δ, with this
value of γ, yields

δ ≤ 1
3
(α + β) − 1

3

√
(2α + 2β − 3)(2α + 2β) − ε, (6.9)

where, again, ε > 0 has been added to account for ignored constants and
lower order terms (implicitly ignored in the original enabling condition (6.7)).
The condition α + β > 3/2 ensures that γ > 0 (so that τmin is optimal) and
the condition δ < 2 − α − β ensures that τmin > 0, which completes all the
addition requirements for the second bound, (6.6), in the attack statement. �

These two attacks apply for arbitrary public and private exponent sizes.
In practice, however, it is expected that at least one of the exponents will be
full sized. We consider these typical cases below.

6.2.2 Full Sized Public Exponent

When the public exponent is full sized there are partial key exposure at-
tacks that can break RSA for any size of private exponent, provided enough
of the most significant bits of the private exponent are known. The results are
summarized in Figure 6.1(a), which show the fraction of bits (β−δ)/β needed
for each size of private exponent d = Nβ .

For small private exponents the small private exponent attacks from Chap-
ter 5 can be considered partial key exposure attacks in which none of the most
significant bits of the private exponent are needed. Thus, for private exponents
d < N0.25, Wiener’s attack can efficiently factor the modulus. For larger pri-
vate exponents up to about N0.2929, Boneh and Durfee’s attack can be used
to factor the modulus (assuming the modulus is sufficiently large).

For larger private exponents the best known attacks are the two arbitrary
exponent attacks from above. In particular, letting α ≈ 1 in Attacks 6.2 and
6.3 recover Ernst et al.’s original results (see [75]), which we restate here.
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Attack 6.4. For every ε > 0 there exists an n0 such that for every n > n0

the following holds: Let N be an n-bit RSA modulus with balanced primes,
let e be a valid public exponent and let d = Nβ be its corresponding private
exponent defined modulo φ(N). Given the public key (e, N) and d̂ satisfying
|d − d̂| < N δ, where

δ ≤ 5
6
− 1

3

√
1 + 6β − ε, (6.10)

then the modulus can be factored in time polynomial in log(N), provided that
Assumptions 2.15 and 2.14 hold.

Attack 6.5. For every ε > 0 there exists an n0 such that for every n > n0

the following holds: Let N be an n-bit RSA modulus with balanced primes,
let (e, N) be a valid public key and let d = Nβ be its corresponding private
exponent, where ed ≡ 1 (mod φ(N)). Given the public key and d̂ satisfying
|d − d̂| ≤ N δ, if either of

1. β ≤ 11/16 = 0.687 and

δ <
3
16

− ε,

2. β ≥ 11/16 = 0.687 and

δ <
1
3

√
4β2 + 2β − 2 − ε,

then the modulus can factored in time polynomial in log(N), provided that
Assumptions 2.15 and 2.14 hold.

Notice that the bounds for Attacks 6.4 and 6.5 match when

β =
235
512

≈ 0.459,

with Attack 6.4 being stronger for smaller private exponents and Attack 6.5
being stronger for larger private exponents.

6.2.3 Full Sized Private Exponent

When the private exponent is full sized there are partial key exposure
attacks that can break RSA for any size of public exponent, provided that
enough of the most significant bits of the private exponent are known. The
best known results are summarized in Figure 6.1(b), which show the fraction
of bits (1−δ) that are needed to mount the attacks for a given public exponent
Nα.

When the public exponent is smaller than N1/2 there are several attacks
by Boneh, Durfee and Frankel [30]. All of these attacks rely on the following
result that allows them to, essentially, know the constant in the key equation.
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Lemma 6.6. Let N be an RSA modulus with balanced primes, e = Nα be
a valid public exponent with 0 < α ≤ 1/2 and d be its corresponding private
exponent defined modulo φ(N). If the α most significant bits of the private
exponent are known then the constant k in the key equation can be determined,
up to a small constant additive error, in time polynomial in log(N).

Proof: Given the α most significant bits of the private exponent, we can
construct d̂ such that |d − d̂| < d1−α < N1−α and d̂ < N . From (6.3), it
follows that

k̂ =

⌈
ed̂ − 1

N

⌋
=

ed̂ − 1
N

+ ε,

where |ε| ≤ 1/2, satisfies

|k − k̂| <

∣∣∣∣∣e(d − d̂)
φ(N)

∣∣∣∣∣+
∣∣∣∣∣ sed̂

Nφ(N)

∣∣∣∣∣+ 1
2

< 2Nα+(1−α)−1 + 6Nα−1/2 +
1
2

< 9,

where we have used 2φ(N) > N , |s| < 3N1/2, d̂ < N and α ≤ 1/2. Therefore,
the constant k in the key equation lies in the range {k̂− 8, k̂ +8}. Since k̂ can
be computed in time polynomial in log(N), the result follows. �

The first attack by Boneh, Durfee and Frankel that we present applies to
all public exponents smaller than N1/2. We restate their result in the following
theorem.

Theorem 6.7. Let N be an RSA modulus with balanced primes, e = Nα be a
valid public exponent for any 0 < α ≤ 1/2, and d be its corresponding private
exponent defined modulo φ(N). Let k be the constant in the key equation and
let e = γk for some γ > 1. Given the (1−α) most significant bits of the private
exponent the modulus N can be factored in time polynomial log(N) and γ.

Proof: Given the (1 − α) bits of the private exponent first construct d̂ such
that |d− d̂| < dα < Nα = e. Since 0 < α ≤ 1/2, it follows that the fraction of
known bits 1−α ≥ α and so by Lemma 6.6 we can construct k̂ such that the
constant in the key equation satisfies k ∈ {k̂ − 8, k̂ + 8}.

Assuming for now that we know k we can compute dk = e−1 mod k (since
e and k are relatively prime). It follows from the key equation, ed = 1+kφ(N),
that dk also satisfies dk = d mod k. Thus, we can express the private exponent
as d = Dk + dk for some unknown D. Since d̂ is the (1 − α) most significant
bits of the private exponent we can almost completely specify D with d̂/k.
Notice that the private exponent can be written as

d =

(
d̂ − d1 + d − d̂

k

)
k + d1 =

(⌈
d̂ − d1

k

⌉
+

⌊
d − d̂

k

⌋)
k + d1,
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where everything on the right-hand side is known except υ = �(d − d̂)/k�.
Since

|υ| =

∣∣∣∣∣
⌊

d − d̂

k

⌋∣∣∣∣∣ <
∣∣∣∣∣d − d̂

k

∣∣∣∣∣ < e

k
= γ,

there are at most only 2�γ�+1 possible integer values that υ can be. For each
integer |υ′| < γ, we can compute a candidate for D and hence the private
exponent as

d′ =

(⌈
d̂ − d1

k

⌉
+ υ′

)
k + d1.

When υ′ = υ we have d′ = d and the private exponent is found. The modulus
can then be easily factored since φ(N) = (ed − 1)/k is revealed. Therefore,
when k is known only 2�γ� + 1 = 2�e/k� + 1 candidates need to be tested
before the modulus is factored. Since k is not initially known, we can simply
repeat the above method with each k′ ∈ {k̂− 8, k̂ +8} that is relatively prime
to the public exponent. To ensure that no more than 2�γ� + 1 candidates for
the private exponent are tested for any given k′ we can test the candidates by
increasing values of υ′. That is, we fix υ′ = 0 and try each candidate for each
value of k′, then fix υ′ = ±1 and try each candidate for each value of k′, and
continue in this way until k′ = k and υ′ = υ which reveals d and factors the
modulus. In this way at most 17(2�γ�+1) candidates for the private exponent
need to be constructed and tested. Since all computations can be done in time
polynomial in log(N), the result follows. �

Example Consider the public key (e, N) = (3305449, 36115267508656100587).
Given d̂ = 9801674217431385785, the most significant bits of d, we begin by
computing k̂ = (ed̂ − 1)/N� = 897098. Assuming that k̂ = k for now, we
compute dk = e−1 mod k̂ = 156935 and generate candidates for d using

d′ =

(⌈
d̂ − d1

k

⌉
+ υ′

)
k + d1 = (10925979343875 + υ′)897098 + 156935.

When υ′ = 2, we obtain the candidate d′ = 9801674217433525881 and
compute φ′ = (ed′ − 1)/k̂ = 36115267496239464016. Solving the system
{φ′ = (p − 1)(q − 1), N = pq} for integer solutions yields the factorization
N = (4650130739)(7766505833). Thus, k̂ = k, υ′ = υ, and d′ = d. In this
example, the public exponent has size α = 0.3333 and we are given the 0.6763
most significant bits of the private exponent. Also, �e/k� = �γ� = 3. �

Notice that this attack requires that almost all of the private exponent be
known when the public exponent is very small. There is another attack, when
the public exponent is smaller than e < N1/4, that improves on this attack
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by only requiring 3/4 of the most significant bits of the private exponent. The
attack, observed by Blömer and May [21, §1], is not explicitly mentioned by
Boneh, Durfee and Frankel but follows directly from two of their results [31,
Theorems 3.3 and 4.1].

Theorem 6.8. Let N = pq be an RSA modulus with balanced primes, e = Nα

be a valid public exponent for any 0 < α ≤ 1/4, and d be its corresponding
private exponent defined modulo φ(N). Let the primes satisfy |p− q| > 1

λN1/4

for some λ > 1. Let k be the constant in the key equation and let e = γk for
some γ > 1. Given the 3/4 most significant bits of the private exponent the
modulus N can be factored in time polynomial log(N), λ and γ.

In the proof of this theorem we use the quantity s0 = p + q. Notice that
the larger of the RSA primes can be expressed in terms of s0 and N as

p =
1
2

(
s0 +

√
s2
0 − 4N

)
,

where

s2
0 − 4N = (p + q)2 − 4pq = p2 − 2pq + q2 = (p − q)2.

Proof: Given the 3/4 most significant bits of the private exponent we know d̂

such that |d− d̂| < d1/4 < N1/4. Since 3/4 > α, we can use d̂ and Lemma 6.6
to construct k̂ such that the constant k lies in the range {k̂ − 8, k̂ + 8}. For
each k′ ∈ {k̂ − 8, k̂ + 8}, compute

ŝ0 = N + 1 −
⌈

ed̂ − 1
k′

⌋
= N + 1 − ed̂ − 1

k′ + ε′,

for some |ε′| ≤ 1/2. When k′ = k, notice that

|ŝ0 − s0| =

∣∣∣∣∣
(
N + 1 − ed̂ − 1

k
+ ε
)
−
(
N + 1 − ed − 1

k

)∣∣∣∣∣
=
∣∣∣ e
k

(d − d̂) + ε
∣∣∣ < γN1/4 +

1
2

< 2γN1/2.

Thus ŝ0 is a good approximation to the most significant bits of s0 = p + q.
Using this we can construct a good approximation to the most significant bits
of the larger of the RSA primes as follows. Let p̂ be given by

p̂ =
1
2

(
ŝ0 +

√
ŝ2
0 − 4N

)
,

and notice that since

(ŝ0 + s0)(ŝ0 − s0) =
(√

ŝ2
0 − 4N −

√
s2
0 − 4N

)(√
ŝ2
0 − 4N +

√
s2
0 − 4N

)
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we have

|p̂ − p| =
∣∣∣∣12
(
ŝ0 +

√
ŝ2
0 − 4N

)
− 1

2

(
s0 +

√
s2
0 − 4N

)∣∣∣∣
=
∣∣∣∣12(ŝ0 − s0) +

1
2

(√
ŝ2
0 − 4N −

√
s2
0 − 4N

)∣∣∣∣
=

∣∣∣∣∣12(ŝ0 − s0) +
1
2

(ŝ0 + s0)(ŝ0 − s0)√
ŝ2
0 − 4N +

√
s2
0 − 4N

∣∣∣∣∣
≤ 1

2
|(ŝ0 − s0)| + 1

2

∣∣∣∣∣ (ŝ0 + s0)√
ŝ2
0 − 4N +

√
s2
0 − 4N

∣∣∣∣∣ |(ŝ0 − s0)|.

This can be simplified since ŝ0 < 2s0 and s0 = p + q < 3N1/2 imply∣∣∣∣∣ (ŝ0 + s0)√
ŝ2
0 − 4N +

√
s2
0 − 4N

∣∣∣∣∣ <
∣∣∣∣∣ (ŝ0 + s0)√

s2
0 − 4N

∣∣∣∣∣ <
∣∣∣∣∣ 3s0√

s2
0 − 4N

∣∣∣∣∣
= 3
∣∣∣∣p + q

p − q

∣∣∣∣ < 3
∣∣∣∣ 3N1/2

1
λN1/2

∣∣∣∣ = 9λ,

so that

|p̂ − p| <
1
2
(1 + 9λ) |ŝ0 − s0| <

1
2
(1 + 9λ)2γN1/4 < 10λγN1/4.

Thus, we know about 1/2 of the most significant bits of the larger of the RSA
primes. From Theorem 6.1, relaxed for slightly less than 1/2 of the known
bits, we can compute p and hence factor the modulus in time polynomial in
log(N), λ and γ. In particular, we can look for small solutions of the univariate
polynomial f(x) = x + p̂ which has only one small root p0 = p − p̂, modulo
p. Using Theorem 2.8 with c = 10λγ and β = 1/2, we can compute this root
which immediately exposes the factorization of the modulus. �

While this previous attack improves upon the first for public exponents
smaller than N1/4, an even stronger attack exists for public exponents in
the range N1/4 ≤ e ≤ N1/2, provided that they are prime. This yields the
strongest known attack when some of the most significant bits of the private
exponent are known (occurring when α = N1/4). We restate the attack, [31,
Theorem 4.3], in the following theorem.

Theorem 6.9. Let N be an RSA modulus with balanced primes, e = Nα be
a valid prime public exponent with 1/4 ≤ α ≤ 1/2 and d be its correspond-
ing private exponent defined modulo φ(N). Given an α fraction of the most
significant bits of the private exponent the modulus can be factored in time
polynomial in log(N).

Proof: Since we know an α fraction of the most significant bits of the private
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exponent it follows from Lemma 6.6 that we can construct k̂ such that the
constant k in the key equation is in the range {k̂ − 8, k̂ + 8}. Assuming for
now that we know k, notice that

s0 = p + q = N + 1 +
1 − ed

k
,

when reduced modulo the public exponent e yields

s0 ≡ p + q ≡ N + 1 + k−1 (mod e).

The inverse of k is well defined here since e and k are always relatively prime.
Thus, with k known, we can compute s0 modulo e. Since s0 = p + q and
N = pq, notice that

x2 − s0x + N = x2 − (p + q)x + pq = 0,

has solutions p and q. It then follows that the modular equation

x2 − s0x + N ≡ 0 (mod e), (6.11)

also has solutions p0 = p mod e and q0 = q mod e. In fact, because e is a
prime, these are the only two solutions of the equation and we can compute
them in time polynomial in log(N). Once p0 and q0 are known we can factor
the modulus using Theorem 6.1 since we know 1/2 of the least significant bits
of each of the primes (which follows since e > N1/4 and we know p mod e).
Therefore, when we know the constant k we can factor the modulus. Since we
do not know k, we can simply repeat the above with each k′ ∈ {k̂ − 8, k̂ + 8}
until k′ = k and the modulus is factored. Since all computations can be done
in time polynomial in log(N), the result follows. �

While this attack is very strong, only 1/4 of the bits are needed when
e = N1/4, the attack relies on the public exponent being prime. This con-
dition is needed to ensure that the modular quadratic equation (6.11) only
has two solutions and that the solutions can be efficiently computed. When
the public exponent is not a prime, however, the attack can still be mounted
provided that the factorization of the public exponent is known (or can be
computed). If the public exponent has r prime factors e1, . . . , er (with multi-
plicities γ1, . . . , γr, respectively) then the equation

x2 − s0x + N ≡ 0 (mod ei),

will yield solutions p mod ei and q mod ei for each i. If the multiplicity of ei is
greater than one we can lift these solutions to p mod eγi

i and q mod eγi

i . Given
all the p mod eγi

i , we can then compute p mod e with the Chinese remainder
theorem. Since there are two candidates of p mod eγi

i for each i this will require
trying 2r possible combinations before p mod e can be computed. In this way,
we have the following corollary, originally from Boneh, Durfee and Frankel [31,
Corollary 4.4].
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Corollary 6.10. Let N be an RSA modulus with balanced primes, e = Nα

be a valid public exponent with 1/4 ≤ α ≤ 1/2 and d be its corresponding
private exponent defined modulo φ(N). If the public exponent has r distinct
prime factors and the factorization is known then the modulus can be factored
in time polynomial in log(N) and 2r given the α most significant bits of the
private exponent.

When the public exponent is greater than N1/2, the arbitrary exponent
attacks can be used if enough of the most significant bits of d are known. The
strongest result is obtained by letting β ≈ 1 in Attack 6.3, which recovers
Ernst et al.’s original result [75, Theorem 2]. We restate the attack as follows.

Attack 6.11. For every ε > 0 there exists an n0 such that for every n > n0

the following holds: Let N be an n-bit RSA modulus with balanced primes, let
e = Nα ≥ N1/2 be a valid public exponent and let d be its corresponding private
exponent defined modulo φ(N). Given the public key (e, N) and d̂ satisfying
|d − d̂| < N δ, if

δ ≤ 1
3

+
α

3
− 1

3

√
4α2 + 2α − 2 − ε,

then the modulus can be factored in time polynomial in log(N), provided that
Assumptions 2.15 and 2.14 hold.

6.2.4 Effectiveness in Practice

In Figure 6.2, we illustrate the practical effectiveness of some of the above
attacks using limited computational resources. In particular, plot (a) shows
Attacks 6.4 and 6.5 and plot (b) shows Theorem 6.7 and Attack 6.11.
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FIGURE 6.2: Effectiveness of partial key exposure attacks with known most
significant bits using small lattices.
(J. Math. Crypt. 2 (2008), 117–147. c© de Gruyter 2008. Used with permission.)
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The experimental bounds (along with the asymptotic theoretical bounds
in straight lines) are shown. All experiments used a 1024-bit modulus. For
the lattice-based attacks (Attacks 6.4, 6.5 and 6.11), the bounds are obtained
when mounting the attack with a small lattice of dimension 16. As can be seen,
the attacks work well in practice with even a small lattice. Since the bound
of Theorem 6.7, unlike lattice-based attacks, is not an asymptotic result, we
can achieve the bound in practice.

6.3 Partially Known Private Exponent: LSBs

In this section we consider attacks in which some of the least significant
bits of the private exponent are known. Again, we use a relaxed notion for
what least significant bits means. In particular, we assume that an adversary
knows d̃ and some M such that d̃ = d mod M . Thus, the private exponent
can be written as d = d0M + d̃ where d0 is the only unknown. Letting d = Nβ

and M = Nβ−δ, the unknown d0 satisfies

|d0| =

∣∣∣∣∣d − d̃

M

∣∣∣∣∣ <
∣∣∣∣ d

M

∣∣∣∣ < N δ,

so δ is still used to represent the size of the unknown part of the private
exponent. As with the known most significant bits case we begin with attack
for arbitrary public and private exponent and then proceed with the expected
cases of one of the exponents being full sized. The best known attacks, for full
sized exponents, are shown in Figure 6.3.

6.3.1 Arbitrary Exponents

There is one partial key exposure attack on RSA, with known least signifi-
cant bits of the private exponent, that applies to arbitrary public and private
exponents. The attack, which is a simple generalization of a result by Ernst,
Jochemsz, May and de Weger [75], is given below.

Attack 6.12. For every ε > 0 there exists an n0 such that for every n > n0

the following holds: Let N be an n-bit RSA modulus with balanced primes,
e = Nα be a valid public exponent and d = Nβ be its corresponding private
key defined modulo φ(N). Let M = Nβ−δ for some 0 ≤ δ ≤ β. Given the
public key (e, N), M and d̃ = d mod M , if

δ ≤ 5
6
− 1

3

√
6β + 6α − 5 − ε, (6.12)

then the modulus can be factored in time polynomial in log(N), provided that
Assumptions 2.15 and 2.14 hold.
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FIGURE 6.3: Theoretical bounds for partial key exposure attacks with
known least significant bits.
(R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 371-386, 2005. c© Interna-

tional Association for Cryptologic Research 2005. Used with permission.)

Justification: Letting d = Md0 + d̃, we begin with the key equation written
as

eMd0 + ed̃ = 1 + kN − ks,

where d0, k and s are the only unknowns. This suggests that we look for small
integer solutions of the polynomial

f(x, y, z) = (eM)x − Ny + yz + ed̃ − 1 ∈ Z[x, y, z], (6.13)

since (x0, y0, z0) = (d0, k, s) is a root of f(x, y, z) over the integers. Letting
X = Nδ, Y = 2Nα+β−1 and Z = 3N1/2, it follows that

|x0| = |d0| =

∣∣∣∣∣d − d̃

M

∣∣∣∣∣ <
∣∣∣∣ d

M

∣∣∣∣ = N δ = X

|y0| = |k| =
∣∣∣∣ed − 1
φ(N)

∣∣∣∣ < 2Nα+β−1 = Y

|z0| = |s| = |N − φ(N)| < 3N1/2 = Z,

(6.14)

and W = ‖f(xX, yY, zX)‖∞ is given by

W = max{eMX, NY, Y Z, ed̃ − 1} = NY = 2Nα+β . (6.15)

Notice, however, that the polynomial f(x, y, z) has the same set of monomials
as the polynomial in the proof of Attack 6.2. Further, the bounds X, Y , Z
and W = max(eMX, NY, Y Z, ed0 − 1) = 2Nα+β , are also exactly the same.
From the justification of Attack 6.2, we can then conclude that, for sufficiently
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large N , the root (x0, y0, z0) can be computed in time polynomial in log(N)
whenever

δ ≤ 5
6
− 1

3

√
6β + 6α − 5 − ε,

provided that Assumptions 2.15 and 2.14 hold. The modulus is then easily
factored since z0 = s reveals φ(N) = N − s. �

6.3.2 Full Sized Public Exponent

When the public exponent is full sized there exist attacks whenever the
private exponent is smaller than N0.875 provided that enough of the least
significant bits of the private exponent are known. The best known results
are summarized in Figure 6.3(a), which shows the fraction of bits (β − δ)/β
needed for each size of private exponent d = Nβ .

When the private exponent is small enough, just like the known most sig-
nificant bits case, the small private exponent attacks in Chapter 5 can be used.
Here, the attacks can be considered as partial key exposure attacks in which
none of the least significant bits of the private exponent need to be known.
Thus, private exponents smaller then N0.25 can be recovered with Wiener’s
attack and private exponents smaller than N0.2929 should be considered unsafe
due to Boneh and Durfee’s attack.

For larger private exponents the best (and only) known attack is the ar-
bitrary exponent attack. Letting α ≈ 1 in Attack 6.12 yields the following
attack.

Attack 6.13. For every ε > 0 there exists an n0 such that for every n > n0

the following holds: Let N be an n-bit RSA modulus with balanced primes, e
be a valid public exponent and d = Nβ be its corresponding private key defined
modulo φ(N). Let M = Nβ−δ for some 0 ≤ δ ≤ β. Given the public key
(e, N), M and d̃ = d mod M , if

δ ≤ 5
6
− 1

3

√
6β + 1 − ε,

then the modulus can be factored in time polynomial in log(N), provided that
Assumptions 2.15 and 2.14 hold.

This is the original result of Ernst et al. [75]. Notice that when β ≥ 21/24 =
0.875 the sufficient condition for the attack becomes δ ≤ 0. Since this condition
is only a sufficient condition nothing can be said about the attack for private
exponents larger than N0.875.

6.3.3 Full Sized Private Exponent

When the private exponent is full sized there are two known existing at-
tacks whenever the public exponent is smaller than N0.875, provided that
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enough of the least significant bits of the private exponent are known. The
best known results are summarized in Figure 6.3(b), which shows the fraction
of bits (1 − δ) needed for each size of public exponent e = Nα.

When the public exponent is very small there is an attack by Boneh,
Durfee and Frankel [30] that requires only 1/4 of the least significant bits
of the private exponent. This is the strongest known attack with known least
significant bits and is somewhat similar to the strongest attack for known most
significant bits (Theorem 6.9). We restate the result, modified to incorporate
Steinfeld and Zheng’s results [230], in the following attack.

Attack 6.14. Let N be an RSA modulus with balanced primes, e be a valid
public exponent and d be its corresponding private exponent defined modulo
φ(N). Given the 1/4 least significant bits of the private exponent it is expected
that the modulus can be factored in time polynomial in log(N) and in e.

The attack relies on computing solutions of the modular quadratic equation

x2 − (p + q)x + N ≡ 0 mod 2γ , (6.16)

for some integer γ > 1. Since 2γ is not a prime, however, there may be many
solutions to this equation. In fact, the following lemma, from Steinfeld and
Zheng [230], completely characterizes the solutions of this modular equation.
In the following, and in the remainder of this section, we let tx denote the
2-multiplicity of the integer x. That is, tx is the largest integer such that 2tx

divides x.

Lemma 6.15. Let N = pq be an n-bit RSA modulus and let S� be the set of
solutions of the modular equation

x2 − (p + q) + pq ≡ 0 (mod 2n/4−�),

for some integer 0 ≤ � < n/4. Then the size of S� is given by

|S�| =

{
2tp−q+υ when � < n/4 − 2(tp−q − 1)
2(n/4−�)/2� when � ≥ n/4 − 2(tp−q − 1),

where υ = 1 when � ≤ n/4−2(tp−q−1)−3, υ = 0 when � = n/4−2(tp−q−1)−2
and υ = −1 when � = n/4 − 2(tp−q − 1) − 1. Further, letting η = n/4 − �, all
of the solutions have the form

x0 ≡
{

({p, q} mod 2η−tp−q ) + r2η−tp−q (mod 2η) � < n/4 − 2(tp−q − 1)
(p mod 2η/2�) + r2�η/2� (mod 2η) � ≥ n/4 − 2(tp−q − 1),

where r is any integer.

As Steinfeld and Zheng’s result shows, the number of solutions of (6.16)
depends on � and tp−q. Notice that the 2-multiplicity of p − q is simply the
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number of least significant bits that the primes p and q have in common. Thus,
whenever � is small and the primes do not have many least significant bits in
common the number of solutions will be small. If the primes behaved as truly
random odd integers we would have Pr[tp−q = m] = 2−m, which would give
an expectation value E[tp−q] ≤ 2. In practice, as illustrated in Tables A.1 and
A.2 of Appendix A, it is observed that randomly generated RSA prime pairs
do satisfy Pr[tp−q = m] ≈ 2−m. Thus, in practice, it is expected that there
will be at most eight solutions to (6.16) when � is small. We can now give a
justification for the attack.

Justification [Attack 6.14]: Let n be the bitlength of the modulus, let
d̃ = d mod 2n/4 be the known 1/4 least significant bits of the private ex-
ponent and let k = m2tk be the constant in the key equation, where tk is the
2-multiplicity of k and m = k/2tk is odd. For now, we will assume that we
know k. From the key equation, ed = 1 + k(N + 1 − s0), notice that

ks0 = k(N + 1) − (ed − 1) = k(N + 1) − k
(ed − 1

k

)
,

where the fraction (ed − 1)/k = φ(N) is an integer. Substituting k = m2tk

into this equation gives

m2tks0 = m2tk(N + 1) − 2tk

(ed − 1
2tk

)
,

which, when reduced modulo 2n/4−tk yields

ms0 ≡ m(N + 1) −
(ed̃ − 1

2tk

)
(mod 2n/4−tk),

where the right-hand side is completely known. Multiplying through by the
inverse of m (which exists since m is odd) finally gives

s0 ≡ (N + 1) − m−1
(ed̃ − 1

2tk

)
(mod 2n/4−tk).

With s0 mod 2n/4−tk known we then solve the quadratic modular equation

x2 − s0x + N ≡ 0 (mod 2n/4−tk),

which we know has solutions p0 = p mod 2n/4−tk and q0 = q mod 2n/4−tk .
Given one of the solutions, p0 for example, we can construct p mod 2n/4 with
an exhaustive search on remaining unknown tk bits and factor the modulus
using Theorem 6.1 (since 1/2 of the least significant bits of one of the primes
are known). Thus, given k and p0 we can factor the modulus with at most 2tk

applications of Coppersmith’s method.
Since we do not know k, we perform an exhaustive search for it. For each

2 ≤ k′ < e, that is relatively prime to e, we compute

s̃′0 = (N + 1) − m−1
(ed̃ − 1

2tk′

)
(mod 2n/4−tk′ ),
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if it exists, and solve the modular quadratic equation

x2 − s̃′0x + N ≡ 0 (mod 2n/4−tk′ ).

Assuming that tk′ < n/4−2(tp−q −1), there will be at most 2tp−q+1 solutions
to this equation (from Lemma 6.15). If there are more solutions, we reject
k′ and try the next value of k′. When there are at most 2tp−q+1 solutions,
each solution is a candidate for p0 = p mod 2n/4−tk (or q0 = q mod 2n/4−tk).
Each of these candidates can then be used to construct 2tk candidates for
p mod 2n/4 (or q mod 2n/4) by guessing an addition tk (most significant) bits.
When k′ = k, the correct candidate will be found and the modulus will be
factored. Since each k′ leads to at most 2tp−q+12tk′ candidates and we consider
each k′ in the range 2 ≤ k′ < e, it follows that the bound on the total number
of candidates for p mod 2n/4 is given by 2tp−q+1elog2(e)�. To see this, let
γ = tp−q + 1 and notice that

e∑
k′=2

2γ+tk′ ≤
�log2(e)�∑

c=0

2γ+cH(c) <

�log2(e)�∑
c=0

2γ+c�e/2c� ≤ 2γelog2(e)�,

where H(c) is the number of k′ with tk′ = c. In the best case (tp−q = 1) this
leads to at most 4elog2(e)� candidates that need to be tested. In the worst
case, when tp−q is very large and tk′ ≥ n/4 − 2(tp−q − 1), there will be an
exponential number of solutions to the modular quadratic equation.

Assuming that the primes behave, roughly, as random odd integers (as
suggested by the empirical evidence), the expected value of tp−q is roughly 2.
Using this, we then expect to factor the modulus by testing at most 8log2(e)�
candidates. Since all computations can be done in time polynomial in log(N),
the result follows. �

In practice, the number of candidates that need to be tested can be reduced
by pruning values of k′ before solving its corresponding quadratic equation.
For example, since gcd(e, k) = 1, all values of k′ with gcd(e, k′) > 1 can be
rejected. Also, when k′ = k we know that p0 = p mod 2n/4−tk and q0 = q mod
2n/4−tk will be solutions to the quadratic equation. Since we also know the
quantity s0 = (p+q) mod 2n/4−tk , it follows that two of the at most 2tp−q+1+tk

solutions, say x1 and x2, should satisfy s0 ≡ x1 + x2 (mod 2n/4−tk). If no
two solutions exist then the current value of k′ can be rejected. Additionally,
when the number of solutions is small, only solutions that satisfy s0 ≡ x1 +x2

(mod 2n/4−tk) need be considered as candidates.
Since the runtime of the attack depends on the size of the public exponent

the attack can only be mounted for very small public exponents. Indeed, to
maintain an overall complexity that is polynomial in log(N) the size of the
public exponent should also be polynomial in log(N).

When the public exponent is larger, and the above attack is not feasible,
the arbitrary exponent attack from above can be used. Using the approxima-
tion β ≈ 1 in Attack 6.12, we obtain the following attack.
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Attack 6.16. For every ε > 0 there exists an n0 such that for every n > n0

the following holds: Let N be an n-bit RSA modulus with balanced primes,
e = Nα be a valid public exponent and d be its corresponding private key
defined modulo φ(N). Let M = N1−δ for some 0 ≤ δ ≤ 1. Given the public
key (e, N), M and d̃ = d mod M , if

δ ≤ 5
6
− 1

3
√

6α + 1 − ε,

then the modulus can be factored in time polynomial in log(N), provided that
Assumptions 2.15 and 2.14 hold.

While this attack follows directly from the work in [75], which the arbitrary
exponent attack is based on, it was previously derived by Blömer and May [21,
Theorem 11]. Notice that (symmetric to the full sized public exponent) when
α ≥ 21/24 = 0.875 the sufficient condition for the attack becomes δ ≤ 0.
Thus, nothing can be said about the attack for public exponents larger than
N0.875.

6.3.4 Practical Effectiveness

We illustrate the practical effectiveness of Attacks 6.13 and 6.16 in Fig-
ure 6.4. The experimental bounds are obtained when mounting the attacks
with a small lattice (of dimension 16) with a 1024-bit modulus. The (asymp-
totic) theoretical bounds are also shown in straight lines. As can be seen, the
attacks work well in practice with even a small lattice. For small (public or
private) exponents, the attack approaches the theoretical bounds fairly well.
As the exponents become larger, the bounds achieved with this size of lattice
starts to diverge from the theoretical bounds.
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FIGURE 6.4: Effectiveness of partial key exposure attacks with known least
significant bits.
(J. Math. Crypt. 2 (2008), 117–147. c© de Gruyter 2008. Used with permission.)
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6.4 Partially Known Primes

All of the small private exponent attacks from Chapter 5 and most of the
partial key exposure attack in this chapter exploit the key equation

ed = 1 + kφ(N) = 1 + k(N − s),

and, specifically, rely on the fact that the modulus N is a good approximation
to the unknown φ(N). In particular, the bounds for each of the attacks depends
on the inequality |N − φ(N)| = |s| < 3N1/2. The results of the attacks can,
therefore, be improved if a better approximation for φ(N) is known.

When some number of the most significant bits of one (or both) of the
RSA primes is known, we can construct a better approximation for φ(N). Let
p̂ be an approximation for the prime p satisfying

|p − p̂| < Nγ ,

for some 1/4 < γ ≤ 1/2. Thus, p̂ yields the γ/2 most significant bits of the
prime p, where, as usual, we assume that the primes are balanced. There is
no need to consider γ ≤ 1/4, since Theorem 6.1 can be used to factor the
modulus in this case (as 1/2 of the bits of p are known). Given p̂, we can also
compute q̂ = N/p̂, the most significant bits of q, which satisfies

|q − q̂| =
∣∣∣∣Np − N

p̂

∣∣∣∣ =
∣∣∣∣N(p̂ − p)

p̂p

∣∣∣∣ < 4Nγ,

where we have assumed that p, p̂ > 1
2N1/2. When p is the larger of the primes,

we can assume that p, p̂ > N1/2 which then implies |q − q̂| < Nγ . Using
the most significant bits of the primes, notice that we can then compute an
approximation N ′ for φ(N), given by N ′ = N − p̂ − q̂ + 1, that satisfies

|φ(N) − N ′| = |N − p − q + 1 − (N − p̂ − q̂ + 1)| = |p − p̂ + q − q̂| < 5Nγ .

Typically, the modulus N is used as an approximation for φ(N). Since

|φ(N) − N | = |s| ≥ 3
2
N1/2,

it follows that N ′ is a better approximation whenever γ < 1/2 − logN (3/10).
Letting s′ = N ′ − φ(N), we can then write the key equation as

ed = 1 + kφ(N) = 1 + k(N ′ − s′), (6.17)

and use this as the starting point for all of the known attacks on RSA (that
also start with the key equation).

We state the main results for the small private exponent attacks and the
partial key exposure attacks below. Since the results (and proofs and justifi-
cations) follow directly from the original attacks, using equation (6.17) as a
starting point, we omit the proofs and justifications.
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6.4.1 Small Private Exponent Attacks

The generalization of Wiener’s small private exponent attack (Theo-
rem 5.1), when given the most significant bits of one of the primes, is given
in the following.

Theorem 6.17. Let N = pq be an RSA modulus with balanced primes, let
e be a valid public exponent and let d be its corresponding private exponent
defined modulo λ(N). Let k be the integer satisfying ed = 1 + kλ(N), g =
gcd(p − 1, q − 1), g0 = g/ gcd(g, k) and k0 = k/ gcd(k, g). Given p̂ such that
|p − p̂| < Nγ , if the private exponent satisfies

d <
N ′

2s′g0k0
<

N1−γ

10g0k0
, (6.18)

where N ′ = N − p̂ − N/q̂ + 1 and s′ = N ′ − φ(N), then N can be factored in
time polynomial in log(N) and g/k.

Letting d = Nδ, and assuming that g0 is small, the bound in the attack
simplifies to

δ ≤
{

3
4 − α

2 − ε γ = 1/2, Theorem 5.1
1 − α

2 − γ
2 − ε γ < 1/2,

for arbitrary sized public exponents and to

δ ≤
{

1
4 − ε γ = 1/2, α = 1, Theorem 5.1
1
2 − γ

2 − ε γ < 1/2, α = 1, [178,Corollary 3]

when the public exponents are full sized. As can be seen, the bounds cor-
respond to Wiener’s attack when γ = 1/2. The bound for full sized public
exponents was shown by Nassr et al. [178, Corollary 3].

All of the lattice-based small private exponent attacks have been extended
to the scenario of known most significant bits of one of the primes by Sarkar,
Maitra and Sarkar [213]. We only state the results for the stronger sub-lattice
attacks here. The generalized result for Blömer and May’s attack (Attack 5.6),
taken from [213, Theorem 5], is given in the following.

Attack 6.18. For every ε > 0 there exists an n0 such that for every n > n0

the following holds: Let N = pq be an n-bit RSA modulus with balanced primes,
let e be a valid public exponent and let d = N δ be its corresponding private
exponent defined modulo φ(N). Given the public key (e, N) and the γ most
significant bits of one of the primes, if 1/4 < γ ≤ 1/2 and

δ ≤ 2
5
− 6

5
γ +

2
5

√
4γ2 − γ + 1 − ε, (6.19)

then the modulus can be factored in time polynomial in log(N), provided that
Assumptions 2.15 and 2.14 hold.
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The generalized result for Boneh and Durfee’s attack (Attack 5.4), as taken
from [213, Theorem 4], is given in the following.

Attack 6.19. For every ε > 0 there exists an n0 such that for every n > n0

the following holds: Let N = pq be an n-bit RSA modulus with balanced primes,
let e be a valid public exponent and let d = N δ be its corresponding private
exponent defined modulo φ(N). Given the public key (e, N) and the γ most
significant bits of one of the primes, if 1/4 < γ ≤ 1/2 and the private exponent
satisfies

1 − 2γ < δ ≤ 1 −√
γ − ε, (6.20)

then the modulus can be factored in time polynomial in log(N), provided that
Assumptions 2.15 and 2.14 hold.

The lower bound on δ in the bound for this attack is needed to ensure that
the sub-lattice that they use in the justification is geometrically progressive.

6.4.2 Partial Key Exposure Attacks

Several of Ernst et al.’s partial key exposure attacks from Sections 6.2 and
6.3 (requiring some bits of the private exponent) have been generalized to use
some of the most significant bits of the primes by Maitra and Sarkar [211, 212].

The combined generalization of Attacks 6.2 and 6.12 (arbitrary public
exponent attacks with known most and least significant bits of the private
exponent, respectively), taken from [212, Theorems 2 and 4], is given in the
following.

Attack 6.20. For every ε > 0 there exists an n0 such that for every n > n0

the following holds: Let N be an n-bit RSA modulus with balanced primes, let
e = Nα be a valid public exponent and let d = Nβ be its corresponding private
exponent defined modulo φ(N). Given p̂ such that |p− p̂| < Nγ , and at least a
(β − δ)/β fraction of the most or least significant bits of the private exponent,
if δ satisfies

δ ≤ 1 − γ

3
− 2

3

√
γ(γ + 3β + 3α − 3) − ε,

then the modulus can be factored in time polynomial in log(N), provided that
Assumptions 2.15 and 2.14 hold.

The generalization of Attack 6.3 (arbitrary public exponent with known
most significant bits of the private exponent), taken from [212, Theorem 3],
is given in the following.

Attack 6.21. For every ε > 0 there exists an n0 such that for every n > n0

the following holds: Let N be an n-bit RSA modulus with balanced primes, let
e = Nα be a valid public exponent and let d = Nβ be its corresponding private
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exponent defined modulo φ(N). Given p̂ and d̂ such that |p − p̂| < Nγ and
|d − d̂| < N δ, if δ satisfies

δ ≤ 1 − γ +
λ

3
− 2

3

√
λ(λ + 3γ) − ε,

where λ = max{δ + α − 1, β + α − 3/2}, then the modulus can be factored in
time polynomial in log(N), provided that Assumptions 2.15 and 2.14 hold.

What is rather interesting about these combined partial key exposure at-
tacks is that, when some bits from the primes are known, the total number of
bits needed from both the primes and the private exponent combined is less
than the total number of bits needed if only bits from the private exponent
are available.

6.4.3 Exhaustive Search Attacks

In practice, when none of the bits of the primes are known, the attacks in
this section can still be mounted successfully by guessing some of the bits of
the primes. The attacks can be repeatedly mounted, once for each guess, until
the correct guess is tried.

For the small private exponent attacks, Sarkar, Maitra and Sarkar [213]
perform experiments to determine the (expected) number of bits of the primes
that need to be guessed for various private exponent sizes, lattice dimensions
and modulus sizes. The data shows feasibility of the attack for the various
parameters. For example, based on the experimental evidence, it is feasible
to break instances of 1000-bit RSA with private exponents up to N0.3. Using
a 72-dimensional lattice, (based on one trial) only 33 bits of the primes were
needed to be guessed for a private exponent of size N0.3. The time needed
for lattice reduction, resultant computations and solving for the integer roots,
combined, is about 5 hours for their implementation. Using this is as the time
needed for each guess, the attack is feasible. For the full experimental results,
we refer the reader to [213].

For the partial key exposure attacks, Sarkar and Maitra [211, 212] perform
experiments to determine the (expected) number of bits of the primes that
need to be guessed for several different parameter choices. We summarize their
findings in Table 6.1. For a given bitlength of private exponents (log2(d)), the
table shows the average number of bits of the private exponent (bits of d)
needed to factor the modulus without any known (or guessed) bits of the
private primes, the average number of bits of the primes needed with a fixed
number of known bits of the private exponent (bits of d + bits of p), and
the average difference (Δ bits) of the total needed bits. In all cases, the total
number of bits needed is less when some of the most significant bits of the
primes are known.
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TABLE 6.1: Effectiveness of exhaustive search attacks
needed needed bits

log2(d) bits of d of d + p Δ bits
Attack 6.20 (MSBs) 308 113.3 80 + 24.0 9.3
Attack 6.20 (MSBs) 359 213.0 150 + 59.3 4.6
Attack 6.20 (LSBs) 308 110.3 80 + 24.6 5.7
Attack 6.21 (MSBs) 651 672.6 517 + 34.2 21.5

6.5 Key Reconstruction with Random Errors

We finish this chapter by briefly mentioning the key reconstruction prob-
lem. Given an ε fraction of random bits of the private key, as the name sug-
gests, the key reconstruction problem is to determine the remaining (1 − ε)
bits. This scenario is very different from the partial key exposure attacks dis-
cussed in the previous sections where the known bits come from one contiguous
block of the most or least significant bits of one of the primes or the private
exponent or from both.

Using Coppersmith’s techniques, Herrmann and May [101] show that
loge(2) ≈ 0.7 of the bits of one of the primes, from any positions, is sufficient
to factor the modulus (and hence compute the private key). The complexity
of the method, however, is exponential in the number of blocks of known bits,
and so is not efficient when the known bits are randomly distributed.

Halderman et al. [95], consider the scenario in which an approximation
of the RSA primes are known, where each bit has some probability of being
correct. The probability can be different for different bit types (one or zero).
The approximations can be considered as corrupted primes. Of particular
interest to Halderman et al., is when the corruption is unidirectional (or almost
unidirectional). That is, one of the bit types (either zero or one) is always (or
almost always) correct in the approximation. The other bit type will then
have some non-negligible probability that it is incorrect (corrupted) whenever
it appears.

Using a branch and prune technique, Halderman et al., essentially con-
struct a rooted tree whose leaves contain candidates for the primes. The root
corresponds to the least significant bits of the primes (which each must be
1’s since they are odd). Each node in level � (� = 1 for the root) is a candi-
date for the � least significant bits in the binary representation of the primes.
Thus, there are four possible children of the root, corresponding to the four
possible assignments of the next-to-least significant bit of the primes. Using
the given approximations for the primes, the probabilities for the bits in the
approximations, and the known equation N ≡ pq (mod 2�), a probability is
given to each of the four children. Nodes with zero probability are pruned
from the tree. In this way, the tree is built up and the leaves in the tree are
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(full) candidates for the primes. In the worst case, where all probabilities are
1/2, each node has four children and this is just an exhaustive search for
the bits of the primes. However, in other cases the attack is feasible and has
been demonstrated to work in practice. For example, Halderman et al. have
demonstrated that approximations for 1024-bit primes with 6% unidirectional
corruption can be efficiently reconstructed as can approximations for 512-bit
primes with 10% unidirectional corruption. For more detail, see [95].

A stronger attack by Heninger and Shacham [99], that uses more informa-
tion about the private key, will be discussed in Chapter 8.

6.6 Additional Notes

6.1 Rivest and Shamir [203] first showed that an RSA modulus could be
factored given some of the most or least significant bits of one of the primes.
Their method, requiring 2/3 of the bits of one of the primes, factors the
modulus by solving a certain integer programming problem. When the most
significant bits are known, Coppersmith reduced the fraction of needed bits to
3/5 in [49] and ultimately to 1/2 in [50]. The modulus is factored by looking
for small integer solutions of the bivariate equation (p̂+x)(q̂ + y) = N , where
p̂ and q̂ are the known most significant bits of the primes (given one of p̂ or
q̂ the other is easily computed since N = pq). Howgrave-Graham [111] later
showed that the result can also be obtained by looking for small solutions
of a univariate modular equation. The known least significant bits case was
later observed by Boneh, Durfee and Frankel [30]. Their method looks for
small integer solutions of the bivariate equation (xr + p̃)(yr + q̃) = N , where
p̃ = p mod r and q̃ = N/q mod r are the known least significant bits of the
primes for some known r > N1/4. Again, only one of p̃ or q̃ needs to be
originally known since the other can be computed from N ≡ pq (mod r).
This result is also the source of the relaxed notion of least significant bits
used throughout this chapter. The proof for the known least significant bits
case of Theorem 6.1 is from May [162, Theorem 12].

The factoring with a hint attacks work quite well in practice. For example,
see the practical experiments performed by Coron [55, Tables 1, 2] for the
known most significant bits.

All of the methods discussed require that one contiguous block of the
most or least significant bits be known. The proof in Theorem 6.1, however,
can easily be modified to show that the modulus can be factored provided
that at least 1/2 of the bits of one of the primes is known and the unknown
bits are in one contiguous block. Thus, the known bits can occur in at most
two blocks of known bits (where the known blocks correspond to the most
and least significant bits). Herrmann and May [101] consider the more general
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problem when any number of blocks of bits of one of the primes are known.
They show that knowing loge(2) ≈ 0.7 of the bits is sufficient to factor the
modulus regardless of the number of blocks. However, the complexity of their
method is exponential in the number of blocks and so the number of blocks
must be O(log log N) in order to maintain a polynomial time complexity.

The factoring with a hint problem can also be viewed as factoring with
an oracle that answers questions about the bits of the prime. In particular,
the oracle can tell you what the i-th bit of the prime is. The factoring re-
sults (given here) show that an RSA modulus can be factored given access to
1
4 log2(N) such oracle calls. If the oracle is allowed to answer arbitrary ques-
tions, however, it is shown by Maurer [160] that with ε log2(N) oracle calls,
for any ε > 0, an RSA modulus could be factored.

6.2 The first known partial key exposure attacks with known most significant
bits of the private exponent, by Boneh, Durfee and Frankel [30, 31], only
applied to public exponents at most N1/2. The first known attacks for public
exponent greater than N1/2 were presented by Blömer and May [21]. The
stronger attacks by Ernst et al. [75], which are presented here, were later
developed.

Jochemsz and de Weger [118] presented a very efficient partial key exposure
attack for private exponents smaller than N1/2. The attack requires a (2β −
1/2) fraction of bits of the private exponent. The known bits can be the most
significant bits, the least significant bits, or a combination of both.

There is no known partial key exposure attack when both the public and
private exponents are full sized.

6.3 The original presentation of the small public exponent attack by Boneh,
Durfee and Frankel [30], did not account for the multiple solutions of the
quadratic modular equation x2 − s0x + N ≡ 0 (mod 2n/4). In the revised
version of their paper [31], the attack is restricted to instances of RSA with
modulus N ≡ 3 (mod 4) and public exponents e < 2n/4−3. In this way, the
number of solutions is always 22+tk and total number of candidates needed
to be tested is bounded by 4elog2(e)�. The general case, as characterized by
Steinfeld and Zheng [230, 231], requires a detailed analysis of the solutions of
x2 − (p + q)x + pq ≡ 0 (mod 2n/4−tk). This is done by first completing the
square (of the previous equation) to obtain

z2 =
(
x − p + q

2

)2

≡
(p − q

2

)2

(mod 2n/4−tk),

where the fractions are well defined since both p and q are odd. Thus, the
problem is reduced to finding square roots modulo a power of two. Based
on their characterization of the solutions to this modular equation, Steinfeld
and Zheng [231] present a generalized version of Boneh, Durfee and Frankel’s
attack that can factor the modulus in polynomial time given the n/4 + tp−q

least significant bits of the private exponent.
Blömer and May [21], were the first to present partial key exposure attacks
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with known least significant bits of the private exponent and arbitrary public
exponents. Their first attack [21, Theorem 9], was a provable lattice-based
attack that could factor the modulus given the α+1/2 least significant bits of
d for public exponents e = Nα < N1/2. The attack uses a 3-dimensional lattice
and is very efficient. Their second attack [21, Theorem 11], is the strongest
known attack (Attack 6.16), although their justification is slightly different
than presented here (they look for small solutions of a modular polynomial).

A new partial key exposure attack with small private exponent and known
least significant bits (of the private exponent) was recently presented by
Aono [8]. The attack improves upon Ernst et al.’s attack (Attack 6.13) when
the private exponent is smaller than about N0.3681. When no bits of the pri-
vate exponent are known, the result agrees with Boneh and Durfee’s strongest
small private exponent attack (d < N0.292). Recall that Ernst et al.’s attack
agreed with Boneh and Durfee’s weaker attack (d < N0.284) when no bits are
known.

6.4 All of the known attacks with known bits of the primes use the most
significant bits of the primes. Attacks can also be constructed using the least
significant bits of the primes. In particular, letting s = s02� + s̃, where s̃ and �
are known, the key equation can be written ed = 1+k(N − s̃−s02�). Starting
with this equation, small private exponent and partial key exposure attacks
can then be constructed.

When mounting the attacks by guessing the most significant bits of the
primes, a method to generate the first few most significant bits of p + q, by
Sun, Wu and Chen [234], can be used as a starting point.



Chapter 7

More Small Private Exponent Attacks

The small private exponent attacks from Chapter 5 show that instances of
RSA with private exponents smaller than about N0.293 should be considered
insecure regardless of the size of the modulus. This bound on the private
exponent can be increased by incorporating an exhaustive search. For example,
as discussed in Chapter 6, the bound for RSA with a 1024-bit modulus can
feasibly be increased to about N0.3. In this chapter, we show that private
exponents significantly larger than these bounds can be insecure when two or
more instances of small private exponent RSA share a common modulus or
share the same private exponent. In particular, given enough instances, the
attacks show that private exponents up to N0.5−ε can be insecure.

7.1 Common Modulus Attack

The common modulus attacks described in Section 3.1 demonstrated that
the common modulus protocol was insecure. In particular, the attacks showed
that it was insecure for any two users to have the same modulus since each
user could easily factor the modulus. When a single user has multiple instances
of RSA with the same modulus, however, the attacks are no longer relevant.
It is this scenario, where a single user has multiple instances of RSA with
a common modulus, that we consider here. We assume that a single user
has generated r instances of RSA with a common modulus N with balanced
primes. Thus, there are r key equations

e1d1 = 1 + k1λ(N)
...

erdr = 1 + krλ(N),

where ki < di for each i = 1, . . . , r. Since each of the private exponents are
small, we will assume that each of the public exponents are full sized.

The strongest known common modulus attack on small private exponent
RSA is by Howgrave-Graham and Seifert [114]. Their attack is a heuristic
lattice-based generalization of Wiener’s small private exponent attack and
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uses ideas from an unpublished attack by Guo (which will be described later
in Section 9.5). We restate their main result, slightly modified by Hinek and
Lam [108], in the following attack.

Attack 7.1. For every ε > 0 there exists n0 such that for all n > n0 the
following holds: Let N be an n-bit RSA modulus with balanced primes, let
(e1, N), (e2, N), . . . , (er, N) be valid RSA public keys, with pairwise distinct
public exponents, and let d1, d2, . . . , dr < N δr−ε be their corresponding private
exponents, respectively. Given the public keys, if δr is no greater than

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r ≥ 7
δr 0.250 0.357 0.400 0.441 0.468 0.493 0.5

then the modulus can be factored in time polynomial in n and in 2r, provided
Assumption 2.6 holds.

We give a justification for the cases of two and three instances (r = 2, 3)
of RSA below, but first introduce some notation. Consider r ≥ 2 instances
of small private exponent RSA with a common modulus N , with balanced
primes, where each instance i ∈ {1, . . . , r} has its own key equation

eidi = 1 + kiλ(N) = 1 +
ki

g
φ(N) = 1 +

ki

g
(N − s),

with ki < di < N δ. Following [114], we let Wi denote key equation for the
i-th instance, multiplied through by g, written as

Wi : eidig − kiN = g − kis. (7.1)

Notice that Wi is the starting point for Wiener’s attack (Theorem 5.1) when
mounted on instance i. Since each key equation eidi = 1 − kiλ(N) shares the
same value of λ(N), any two (different) key equations can be combined to
create a new equation that has λ(N) removed. Indeed, taking the difference
of the key equation for instance i multiplied with kj and the key equation for
instance j multiplied with ki results in kidjej − kjdiei = ki − kj . Following
[114], we let Gi,j denote this equation for instances i and j. That is, let

Gi,j : kidjej − kjdiei = ki − kj . (7.2)

This equation, as will be seen in Section 9.5.2, is the starting point for Guo’s
common modulus attack. We now give a justification for Howgrave-Graham
and Seifert’s attack when there are two or three instances of RSA with a com-
mon modulus. For both cases, it will be assumed that all public exponents
are full sized (i.e., ei ≈ N) and also that g = gcd(p − 1, q − 1) is small (in
particular, it will be assumed that g/ki < 1 for all i). The attack is a heuristic
lattice-based attack that uses the ideas developed in Section 2.6.
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Justification [r = 2, 3]: Using the notation above, consider two instances
of RSA with a common modulus N , each having private exponents smaller
than N δ2 . Notice that the equations k2W1, gG1,2 and W1W2, given by

k2W1 : k2d1ge1 − k2k1N = k2(g − k1s)
gG1,2 : k1d2ge2 − k2d1ge1 = g(k1 − k2)

W1W2 : d1d2g
2e1e2 − d1k2ge1N − d2k1ge2N + k1k2N

2 = (g − k1s)(g − k2s),

along with the trivial equation k1k2 = k1k2 can be written as the vector-
matrix equation x2B2 = v2, where

x2 = (k1k2, k2d1g, k1d2g, d1d2g
2)

B2 =

⎡
⎢⎢⎣

1 −N 0 N2

e1 −e1 −e1N
e2 −e2N

e1e2

⎤
⎥⎥⎦

v2 = (k1k2, k2(g − k1s), g(k1 − k2), (g − k1s)(g − k2s)).

The vector v2 is an integer linear combination of the rows in B2, and is there-
fore a vector in the lattice L2 generated by the rows of B2. The size of v2,
coming from the dominant last component, is roughly k1k2s

2 ≈ N2δ2+1 =
N2(δ2+1/2). Since the components of v2 are not the same size, we consider the
modified vector-matrix equation x2B2D2 = v2D2, where D2 is the diagonal
matrix

D2 =

⎡
⎢⎢⎣

N 0 0 0
0 N1/2 0 0
0 0 N1+δ2 0
0 0 0 1

⎤
⎥⎥⎦ ,

which we denote as D2 = diag(N, N1/2, N1+δ2 , 1). Letting B′
2 = B2D2 and

v′2 = v2D2, it follows that the new target vector v′2, which is a vector in the
lattice L′

2 generated by the rows in B′
2, has balanced components. Notice that

the new target vector

v′2 = (k1k2N, k2(g − k1s)N1/2, g(k1 − k2)N1+δ2 , (g − k1s)(g − k2s)),

has norm ‖v′
2‖ ≈ N2(1/2+δ2) and that the new lattice L′

2 has volume

vol(L′
2) = |det(B′

2)| = | det(B2) det(D2)| = e2
1e

2
2N

5/2+δ2 ≈ N13/2+δ2 ,

where we have ignored any small constants not depending on N and where
we have also used the approximation e1, e2 ≈ N . Since the lattice L′

2 has
dimension 4 = 2r, it follows from Minkowski’s bound (Theorem 2.3) that if
v′2 is a shortest vector in L′

2, then it must satisfy ‖v′2‖ < 2vol(L′
2)

1/4. Using
the values for ‖v′2‖ and vol(L′

2), from above, this is satisfied whenever

N2(1/2+δ2) < 2N
1
4 (13/2+δ2),
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or more simply, solving for δ2 in the exponents, when

δ2 <
5
14

− ε ≈ 0.357 − ε,

where ε > 0 accounts for any constants that were ignored. This correction
term can be made arbitrarily small by considering sufficiently large N . Thus,
both private exponents must be smaller than N0.3571−ε in order for the target
vector v′2 to be a smallest vector in L′

2.
Examining the basis matrix B′

2 = B2D2 in more detail, notice that the last
row in the basis matrix, given by (0, 0, 0, e1e2), is the smallest basis vector in
B′

2. Therefore, another necessary condition for v′2 to be a smallest vector in L′
2

is that ‖v′2‖ ≤ ‖(0, 0, 0, e1e2)‖ ≈ N2. Since ‖v′2‖ ≈ N2(1/2+δ2), it follows that
a second necessary condition is given by δ2 ≤ 1/2, which is always satisfied
when Minkowski’s bound is satisfied.

When both of the private exponents satisfy these necessary conditions and
Assumption 2.6 holds for L′

2, the target vector v′
2 will be the smallest vector

in L2. The target vector can then computed by solving the SVP for lattice
L′

2. Once v′2 is known, the vector x2, given by

x2 = (k1k2, k2d1g, k1d2g, d1d2g
2),

can be computed by solving x2B′
2 = v′2. Notice that dividing the second com-

ponent of x2 by the first component yields gd1/k1, which, just as in Wiener’s
attack (Theorem 5.1), can be used to compute φ(N) since

φ(N) =
g

k1
(e1d1 − 1) = e1

gd1

k1
− g

k1
=
⌊
e1

dg1

k1

⌋
,

whenever g < k1 (which we assume to be true for randomly chosen primes).
Once φ(N) is known, the modulus is easily factored. Since all computations
can be done in time polynomial in log(N), the case r = 2 is justified.

Next we consider the case of three instances of RSA with a common mod-
ulus and private exponents each smaller than N δ3 . Here, Howgrave-Graham
and Seifert use eight equations made up the Wi and Gi,j , to construct a basis
matrix with a known small vector. Even though adding one more key equation
only introduces two new unknowns to the system, we must consider eight un-
knowns here, since we must consider linear equations. In the previous case, all
the unknowns appeared as pairs (kidj , kikj , didj) which resulted in four linear
unknowns. In this case, all of the unknowns appear as triples and there are
eight of these. Howgrave-Graham and Seifert use the seven equations k2k3W1,
k3gG1,2, k3W1W2, k2gG1,3, W1gG2,3, W2gG1,3, and W1W2W3 in addition to
the trivial equation k1k2k3 = k1k2k3. Notice that these can be written as the
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vector-matrix equation x3B3 = v3, where

x3 = (k1k2k3, d1k2k3g, k1d2k3g, d1d2k3g
2,

k1k2d3g, d1k2d3g
2, k1d2d3g

2, d1d2d3g
3)

B3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −N 0 N2 0 0 0 −N3

e1 −e1 −e1N −e1 0 e1N e1N
2

e2 −e2N 0 e2N 0 e2N
2

e1e2 0 −e1e2 −e1e2 −e1e2N
e3 −e3N −eeN eeN

2

e1e3 0 −e1e3N
e2e3 −e2e3N

e1e2e3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

v3 =
(
k1k2k3, k2k3(g − k1s), k3g(k1 − k2), k3(g − k1s)(1 − k2s),

k2g(k1 − k3), (g − k1s)g(k2 − k3), (g − k2s)g(k1 − k3),
∏

i=1..3

(g − kis)
)
.

The size of v3, which like v2 is dominated by the last component, is roughly
k1k2k3s

3 ≈ N3(δ+1/2). Since the components of v3 are not the same size, we
consider the modified problem x3B3D3 = v3D3, where D3 is the diagonal
matrix

D3 = diag(N3/2, N, N3/2+δ3 , N1/2, N3/2+δ3 , N1+δ3 , N1+δ3 , 1).

Letting B′
3 = B3D3 and v′3 = v3D3, it follows that v′

3 is a vector in the
lattice L′

3 generated by the rows in B′
3. The new target vector (with balanced

components) has norm ‖v′3‖ ≈ N3(1/2+δ3) and the new lattice has volume

vol(L′
3) = |det(B′

3)| = | det(B3) det(D3)| = e4
1e

4
2e

4
3N

8+4δ3 ≈ N20+4δ3 ,

where we have again ignored any small constants not depending on N and
used the approximation ei ≈ N . Since the lattice L′

3 has dimension 8 = 2r, it
follows Minkowski’s bound (Theorem 2.3) that a necessary condition for v′3 to
be a shortest vector in L′

3 is given by ‖v′
3‖ <

√
8vol(L′

3)
1/8. Using the values

for ‖v′
3‖ and vol(L′

3) from above, this is satisfied whenever

N3(1/2+δ3) <
√

8N
1
8 (20+4δ3),

or more simply, solving for δ3 in the exponent, when

δ3 <
2
5
− ε = 0.4 − ε,

for some ε > 0 that corrects for the constants that were ignored. This cor-
rection term can be made arbitrarily small by considering sufficiently large
N . Thus, all three private exponents must be smaller than N0.4−ε if v′3 is a
smallest vector in L′

3.
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Examining the basis matrix B′
3 = B3D3 in more detail, notice that the last

row in the basis matrix, given by (0, . . . , 0, e1e2e3), is the smallest basis vector
in B′

3. Therefore, another necessary condition for v′
3 to be a smallest vector

in L′
3 is that ‖v′3‖ ≤ ‖(0, . . . , 0, e1e2e3)‖ ≈ N3. Since ‖v′

3‖ ≈ N3(1/2+δ3), it
follows that a second necessary condition is, again, given by δ3 ≤ 1/2. This
condition is always satisfied when Minkowski’s bound is satisfied.

Just as in the previous case, when the private exponents satisfy these nec-
essary conditions and when Assumption 2.6 holds, the vector v′3 will be the
smallest vector in L′

3. Computing this vector, by solving the SVP problem
for L′

3, will allow us to compute x3, whose first two components are k1k2k3

and d1k2k3g, which then yields gd1/k1. With this we can compute φ(N) and
hence easily factor the modulus. Since all computations can be done in time
polynomial in log(N), the case r = 3 is shown to hold. �

When there is only one instance of RSA (r = 1), the attack uses only the
equation W1 along with the trivial equation k1 = k1. The result is another
version of the heuristic lattice-based version of Wiener’s attack described in
Section 5.1.2, which uses W1 and the trivial equation d1 = d1.

In the general case, when there are r instances of RSA with a common
modulus, a vector-matrix equation xrBr = vr is constructed with 2r equa-
tions. The first equation is the trivial equation k1 · · · kr = k1 · · · kr, and the
remaining equations come from (combinations of) the Wi and Gi,j equations
with the final equation being W1 · · ·Wr. The remaining equations used need
to be chosen so that the matrix Br is triangular (so that we can compute the
volume of the lattice) and also so that the volume of the matrix is maximized.
The last component of vr (coming from the equation W1 · · ·Wr) will domi-
nate the components of vr with size Nr(δr+1/2). Multiplying the vector-matrix
equation by an appropriate diagonal matrix yields a new vector-matrix equa-
tion xrB′

r = v′r, where the new target vector has balanced components (of size
roughly Nr(δr+1/2)). Using Minkowski’s bound (Theorem 2.3), a necessary
condition for v′

r to be a smallest vector L′
r can be determined. Howgrave-

Graham and Seifert show that, for an optimal choice of equations for the
lattice, Minkowski’s bound is satisfied when the private exponents are smaller
than N δr , where

δr <

⎧⎪⎪⎨
⎪⎪⎩

(2r+1)2r−(2r+1)( r
r/2)

(2r−2)2r+(4r+2)( r
r/2)

r odd

(2r+1)2r−4r( r−1
(r−1)/2)

(2r−2)2r+8r( r−1
(r−1)/2)

r even.

(7.3)

For more detail of the optimal choice of equations and the derivation of these
bounds, see [114, Appendix].

Even though the second criterion for the target vector to be a smallest
vector in the lattice was always satisfied when Minkowski’s bound was satisfied
for the r = 2, 3 cases, it must be considered in the general case. From the
description of the construction of the basis matrix B′

r, given above, the final
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row in the basis matrix will always be given by (0, . . . , 0, e1 · · · en), which
has size about Nr. Thus, a second necessary condition for v′

r to be a smallest
vector is given by ‖v′r‖ ≤ ‖(0, . . . , 0, e1 · · · er)‖ ≈ Nr. Since ‖v′r‖ ≈ Nr(1/2+δr),
it follows that δr ≤ 1/2. This bound can be seen as a natural limit of the
method imposed by the structure of the lattice construction.

When the private exponents satisfy both of these necessary conditions and
Assumption 2.6 holds for the lattice L′

r, the target vector v′r can be computed
by solving the SVP for the lattice L′

r. This in turn allows us to factor the
modulus (in precisely the same way as for the r = 2, 3 cases). For any r, the
bounds for the attack are given by the minimum of δr < 1/2 and δr given in
(7.3). The bounds from (7.3) are smaller than 1/2 for r < 7 and larger than
1/2 for r ≥ 7. Thus, for any r ≥ 7, the bounds cannot exceed 1/2.

When the public and private exponents are defined modulo φ(N) instead
of modulo λ(N), the attack applies with the same bounds. The result for
r = 2, 3 follows from simply removing each instance of g in the justification
shown above. We illustrate Howgrave-Graham and Seifert’s common modu-
lus attack, when the exponents are defined modulo φ(N), with the following
example.

Example Consider the two public keys given by

(e1, N) = (2022569513, 11262620833)
(e2, N) = (6986711137, 11262620833),

which have the same modulus. Using this information, we can construct the
basis matrix B2 and the diagonal matrix D2 as

B2 =

⎡
⎢⎢⎣

1 −11262620833 0 126846628027925613889
0 2022569513 −2022569513 −22779433533304464329
0 0 6986711137 −78688678405729317121
0 0 0 14131108941833766281

⎤
⎥⎥⎦

D2 = diag(11262620833, 106125, 23371171716496, 1).

Computing an LLL-reduced basis for the new basis matrix B2D2, the smallest
reduced basis vector is given by

v′2 = (5402431435931774,−11012610298164000,

− 21337879777160848, 22448914158485296).

Solving x2B2D2 = v′2 for x2 yields

x2 = (479678, 2671022, 773229, 4305621),

which allows us to compute a candidate for φ(N), given by

φ′ =
⌊
e1

x2[2]
x2[1]

⌋
=
⌊

(2022569513)(2671022)
479678

⌋
= 11262404500.
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Solving the system {φ′ = (x − 1)(y − 1), N = xy} for integer solutions yields
the primes p = 129083, q = 87251. Thus, φ′ = φ(N) and we have factored the
modulus. In this example, the private exponents d1 = 2077 and d2 = 2073 are
both roughly equal to N0.33. �

7.1.1 Practical Effectiveness

While Howgrave-Graham and Seifert’s attack is only a heuristic attack, it is
observed to work well in practice. We illustrate the effectiveness of Attack 7.1
in Tables 7.1 and 7.2 for two and three instances, respectively. The data, taken
from Hinek and Lam [108], shows the success rate of the attack for 1024-bit
and 2048-bit moduli. For each value of δ (size of the private exponents), the
observed success rate, averaged over 100 trials, is given.

TABLE 7.1: Effectiveness of
common modulus attack with two
instances

δ 1024-bit N 2048-bit N
0.351 1.00 1.00
0.352 1.00 1.00
0.353 1.00 1.00
0.354 1.00 1.00
0.355 0.97 1.00
0.356 0.75 1.00
0.357 0.06 0.04
0.358 0.00 0.00

TABLE 7.2: Effectiveness of
common modulus attack with three
instances

δ 1024-bit N 2048-bit N
0.394 1.00 1.00
0.395 1.00 1.00
0.396 1.00 1.00
0.397 1.00 1.00
0.398 1.00 1.00
0.399 0.74 0.99
0.400 0.03 0.00
0.401 0.00 –

As can be seen from the data, the attack works extremely well for pri-
vate exponents approaching the theoretical bounds and then quickly becomes
ineffective. Howgrave-Graham and Seifert [114] also provide some data that
shows the effectiveness of the attack when up to five instances of RSA have a
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common modulus. The success rates also suggest that the attack works quite
well up to the theoretical bounds.

7.2 Common Private Exponent Attack

In this section, we show that Wiener’s small private exponent attack, when
viewed as a heuristic lattice-based attack, is easily extended to attack many
instances of RSA when they each have the same small private exponent. Like
Howgrave-Graham and Seifert’s attack from the previous section, the strength
of the attack increases when more instances are available.

For this attack, we assume that a single user has generated r instances of
RSA that each have the same small private exponent d and a similarly sized
modulus. Thus, there are r key equations

e1d = 1 + k1φ(N1)
...

erd = 1 + krφ(Nr),

(7.4)

where φ(Ni) = Ni − si and ki < d for each i = 1, . . . , r. All of the moduli are
assumed to be the same size and we arbitrarily label them so that they appear
in increasing size. That is, we label them so that N1 < N2 < · · · < Nr < 2N1.
Further, we assume all each modulus Ni is balanced so that |si| < 3N

1/2
i for

each i = 1, . . . , r. The main result, from Hinek [106, Attack 4.1], is given in
the following attack.

Attack 7.2. For any integer r ≥ 1, let N1, N2, . . . , Nr be balanced RSA moduli
satisfying N1 < N2 < · · · < Nr < 2N1. Let (e1, N1), . . . , (er, Nr) be valid RSA
public keys each with the same private exponent d < N δr

r . If

δr <
1
2
− 1

2(r + 1)
− logNr

(6), (7.5)

then all of the moduli can be factored in time polynomial in log(Nr) and r,
provided that Assumption 2.6 holds.

Justification: Let M = �N1/2
r �. Given the r public keys (e1, N1), . . . , (er, Nr),

we begin by considering the r key equations, eid = 1+ki(Ni − si), along with
the trivial equation dM = dM , written as

dM = dM
e1d −N1k1 = 1 − k1s1

e2d −N2k2 = 1 − k2s2

...
. . .

...
...

erd −Nrkr = 1 − krsr.

(7.6)
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This system of r + 1 equations can be written as the vector-matrix equation
xrBr = vr, where

xr = (dM, k1, . . . , kr) (7.7)

Br =

⎡
⎢⎢⎢⎢⎢⎣

M e1 e2 · · · er

−N1

−N2

. . .
−Nr

⎤
⎥⎥⎥⎥⎥⎦ (7.8)

vr = (dM, 1 − k1s1, . . . , 1 − krsr). (7.9)

Notice that the target vector vr is an integer linear combination of the rows in
the matrix Br and hence is a vector in the lattice Lr generated by the rows in
Br. Since Ni ≤ Nr < 2N1, ki < d < N δr

r and si < 3N
1/2
r for each i = 1, . . . , r,

it follows that the target vector satisfies ‖vr‖ <
√

1 + 9rN
1/2+δr
r since

‖vr‖2 = (dM)2 + (1 − k1s1)2 + · · · + (1 − krsr)2 < (1 + 9r)
(
Nδr+1/2

r

)2

,

and that the volume of the lattice Lr, given by vol(Lr) = | det(Br)|, satisfies

vol(L) =

∣∣∣∣∣M
r∏

i=1

(−Ni)

∣∣∣∣∣ =
⌊
N1/2

r

⌋ r∏
i=1

Ni > N
1/2
1 Nr

1 >

(
Nr

2

)r+1/2

.

From Minkowski’s bound (Theorem 2.3), a necessary condition for the target
vector to be a smallest vector in Lr (which has dimension r + 1) is given by

‖vr‖ <
√

r + 1vol(Lr)1/(r+1).

Using the bounds on the norm of the target vector and the volume of the
lattice, from above, a sufficient condition for this necessary condition to hold
is given by

√
9r + 1 N δ+1/2

r <
√

r + 1
(

Nr

2

) r+1/2
r+1

,

or more simply

N1/2+δr
r < crN

(r+1/2)/(r+1)
r ,

where cr is a constant depending on r but not N . For any r ≥ 1, notice that
this constant satisfies

cr =

√
r + 1
9r + 1

1

2
r+1/2

r+1

>

(
1
3

)(
1
2

)
=

1
6
,
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so a new sufficient condition is given by

N1/2+δr
r <

1
6
N (r+1/2)/(r+1)

r = N (r+1/2)/(r+1)−logN (6)
r ,

or, solving for δr in the exponents, simply by

δr <
1
2
− 1

2(r + 2)
− logNr

(6).

When the private exponent is smaller than Nδr
r , we know that the target vector

vr has satisfied the necessary condition, imposed by Minkowski’s bound, to
be a smallest vector in Lr. In addition, the second criterion is also satisfied.
In particular, the size of the target vector vr is smaller than the size of each
of the basis vectors in B, provided δr < 1/2. Therefore, when the private
exponent is sufficiently small and Assumption 2.6 holds for the lattice Lr,
we can compute the target vector by solving the SVP for Lr. Once the target
vector is obtained we can easily factor all of the moduli. From the key equation
eid = 1 + ki(Ni − si), notice that

ki =
eid − (1 − kisi)

Ni
.

Since the target vector

vr = (dM, 1 − k1s1, . . . , 1 − krsr),

exposes the private exponent d and each of the (1− kisi), we can compute all
of the ki values using the equation above. With ki and d, this allows us to com-
pute φ(Ni) = (eid−1)/ki which is then used to factor Ni, for each i = 1, . . . , r.
Since all computations can be done in time polynomial in log(Nr) and in r,
the result follows. �

We illustrate the attack with the following example with three instances
of RSA with the same small private exponent.

Example Consider the three RSA public keys, thought to have a common
private exponent, given by

(e1, N1) = (587438623, 2915050561)
(e2, N2) = (2382816879, 3863354647)
(e3, N3) = (2401927159, 3943138939).

Letting M = �N1/2
3 � = 62794, we construct the basis matrix

B =

⎡
⎢⎢⎣

62794 587438623 2382816879 2401927159
0 −2915050561 0 0
0 0 −3863354647 0
0 0 0 −3943138939

⎤
⎥⎥⎦ .



132 Cryptanalysis of RSA and Its Variants

Applying the LLL algorithm, with B as input, we obtain a reduced basis whose
smallest basis vector is b = (−41130070, 14375987, 50221643, 50147516). If the
attack is successful, we expect the first component of b, denoted by b1, to
satisfy |b1| = Md. We have

|b1|
M

=
|−41130070|

62794
= 655,

which is, in fact, the common private exponent d. For this example, notice
that the enabling condition for the attack, δ < 1

2 − 1
2(r+1) − logN3

(6) ≈ 0.3189,
is satisfied since logN3

(d) ≈ 0.2935. �

7.2.1 Practical Effectiveness

Since Attack 7.2 is only a heuristic, its true value lies in its effectiveness
in practice. In Figures 7.1 and 7.2, we illustrate the success rate of mounting
the attack on random instances of RSA with 1024-bit moduli when a common
small private exponent is shared among several different moduli in the range
2 ≤ r ≤ 35. The success rate is shown as a function of Δ = δ − δr, where δ is
the size of the private exponent and

δr =
1
2
− 1

2(r + 1)
− logNr

(6),

is the bound given in Attack 7.2. Values of Δ < 0 correspond to private
exponents smaller than δr and values of Δ > 0 correspond to private exponents
greater than δr. Each data point is the observed success rate averaged over
several repeated random instances. The number of experiments for each data
point ranged from 1,500 when r = 2 (where the time for lattice reduction
was very small) to 150 when r = 35 (where the time for lattice reduction was
much longer).

As can be seen from the data in Figures 7.1 and 7.1, the attack works ex-
tremely well until Δ is approximately equal to zero, at which point the success
rate rapidly descends to zero. As the number of instances increases (i.e., r in-
creases), the effectiveness of the attack seems to diminish more rapidly when
Δ is close to and greater than zero. Independent of the number of instances,
it was observed that every experiment resulted in a successful attack when
Δ < −0.0025. Based on the experimental evidence, it is clear that Assump-
tion 2.6 holds for the lattices used in Attack 7.2 and that the attack works
quite well in practice for multiple instances of RSA with 1024-bit moduli.

In Figure 7.3, we illustrate the effectiveness of the attack for different
modulus sizes when three instances of RSA share a common small private
exponent (i.e., r = 3). As can be from the data, the attack remains very ef-
fective for each modulus size considered. As the size of the moduli increase,
the sharpness of the cut-off point between a successful attack and an unsuc-
cessful attack becomes much more pronounced (seemingly tending towards a
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FIGURE 7.1: Effectiveness of common private exponent attack with 1024-
bit modulus and 2 ≤ r ≤ 5 instances.
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FIGURE 7.2: Effectiveness of common private exponent attack with 1024-
bit modulus and 10 ≤ r ≤ 35 instances.
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FIGURE 7.3: Effectiveness of common private exponent attack with r = 3
instances and several common modulus sizes.

step function). Each data point represents the observed success rate averaged
over 1, 500 trials. From this experimental evidence, it is clear that Attack 7.2
is very effective for three instances of RSA whose moduli range from 512- to
4096-bits.

7.3 Additional Notes

The generalizations in this chapter involve multiple instances of RSA with
small private exponents. Other generalizations for single instances of RSA also
exist. We briefly mention some of these below.

When the private exponent of a single instance of RSA is close to a rational
multiple of λ(N) = lcm(p− 1, q − 1), both the continued fraction and lattice-
based attacks on small private exponent RSA (Chapter 5) can be mounted.
In particular, attacks exist when |d− a

b λ(N)| is small for some integers a ≥ 0
and b ≥ 1.

When a = 0 and the private exponent is positive, we have the typical
small private exponent scenario. When a = 0 and the private exponent is
negative, we have small negative private exponents. Of course, small negative
exponents correspond to large positive exponents when considered modulo
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λ(N) (or φ(N)). In 2004, Hinek [103] showed that all of the attacks on small
private exponent RSA also work for small negative private exponents, yielding
the same bounds. That is, if private exponents 0 < d < N δ are vulnerable
to one of the small private exponent attacks, then so is any |d| < Nδ. Thus,
private exponents satisfying |d| < N0.292 should be considered unsafe.

The problem of more general large private exponents (a > 1) was first
considered in 1996 by Chen, Chang and Yang [41], who applied Wiener’s
continued fraction attack to private exponents close to rational multiples of
λ(N). This problem was revisited in 2007 by Hinek [106], who showed the
following result.

Theorem 7.3. Let N = pq be an RSA modulus with balanced primes, let
(e, N) be a valid public key and (d, p, q) be its corresponding private key, where
ed ≡ 1 (mod λ(N)), and let g = gcd(p− 1, q− 1). Given the public key, if the
private exponent d satisfies

φ(N)
e

<
∣∣∣a
b
λ(N) − d

∣∣∣ < N1/4

2
√

g b
,

for some integers a ≥ 0 and b ≥ 1, then the modulus N can be factored in
time polynomial in log(N).

In 2005, Chen, Ku and Yen [42] presented a lattice-based attack on the
special case of private exponents close to λ(N). This problem was further
generalized by Hinek [106], who showed the following result.

Attack 7.4. For every ε > 0 there exists n0 such that for every n > n0

the following holds: Let N be an n-bit RSA modulus with balanced primes, let
(e, N) be a valid public key and let (d, p, q) be its corresponding private key,
where ed ≡ 1 (mod λ(N)) and |ab λ(N)−d| < N δ for some integers a ≥ 0 and
b ≥ 1. Let g = gcd(p − 1, q − 1) = Nγ , e = Nα and b = Nβ. Given the public
key, if gb < eN1/4 and the private exponent d satisfies

δ <
1
4

+ α − γ − 2β − 1
4

√
12α − 12γ − 12β + 3 − ε,

then the modulus can be factored in time polynomial in log(N), provided that
Assumptions 2.15 and 2.14 hold.

Another generalization of private exponent RSA was considered in 2004
by Blömer and May [22]. Given a public key (e, N), Blömer and May showed
that if there exists sufficiently small x, y ∈ Z such that

ex + y ≡ 0 (mod φ(N)),

then the modulus can be factored using both continued fractions and lattice-
based techniques. In particular, the attack works for private exponents that
can be written as d = −xy−1 mod φ(N), where

0 < x ≤ 1
3

√
φ(N)

e

N3/4

|p − q| and |y| ≤ |p − q|
φ(N)

ex

N1/4
.
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See [22, Theorem 4] for more details (including a proof). The attack defines
a class of weak keys, a notion that was also introduced by Blömer and May
in [22]. Essentially, a weak key (e, N) is one that exposes the factorization of
the modulus via an efficient method using both e and N . It is shown that the
number of weak keys defined by this attack is N3/4−ε.

Other classes of weak keys have also been discovered, by further gener-
alizing Blömer and May’s attack, by Nitaj [188, 189, 190, 187] and Maitra
and Sarkar [153]. Nitaj factors the modulus using a combination of contin-
ued fractions, lattice basis reduction and factoring techniques (ECM). Maitra
and Sarkar factor the modulus using continued fractions and lattice basis re-
duction. For example, Maitra and Sarkar [153] show classes of weak keys are
defined by the public keys (e, N) satisfying

ex + ψy = 1,

for some x and y satisfying certain conditions and for some ψ, which is a
function of the RSA primes p and q and two other parameters u and v. The
function ψ = (p−u)(q−v) recovers an attack by Nitaj [189]. In Nitaj’s attack,
all the prime factors of p−u and q− v must be small enough so that they can
be feasibly found with factoring techniques (ECM). This leads to an estimated
weak key class of size N1/2−ε. The function ψ = N − pu − v, suggested by
Maitra and Sarkar, introduces another class of weak keys with estimated size
at least N3/4−ε.

§7.1 In Howgrave-Graham and Seifert’s original attack [114], only
Minkowski’s bound was used to ensure that the target vector is a candidate
for a smallest vector in the lattice. The bounds of the attack, without the
δ < 1/2 condition, are given by (7.3). In this case, the bound approaches N as
the number of instances tends to infinity. The second necessary condition was
observed by Hinek and Lam [108], and limits the attack to private exponents
smaller than N1/2. The N1/2 limit of the attack arises from the inclusion of
the equation W1 · · ·Wr in the system of equations. It is an open problem if
Howgrave-Graham and Seifert’s attack can be modified (for example, by ex-
cluding this equation) to obtain an attack that works for private exponents
greater than the N1/2 limit.

§7.2 All of the material in this section is from Hinek [106, Chapter 4].
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Chapter 8

CRT-RSA

The first variant of RSA that we consider is CRT-RSA. Made popular by
Quisquater and Couvreur [198], CRT-RSA is currently the standard way of
implementing RSA in practice.

8.1 CRT-RSA

The computational costs for RSA decryption can be decreased by exploit-
ing the factorization of the modulus. Let (e, N) be a valid public key and
(d, p, q) be its corresponding private key, where the exponents are defined
modulo λ(N). For a given ciphertext c = me mod N , the standard decryption
algorithm for RSA recovers the plaintext by computing

m = cd mod N,

a single exponentiation modulo an n-bit number. Since the primes in the
modulus are known to the party decrypting, the plaintext can also be recovered
by first computing partial decryptions of the ciphertext modulo p and modulo
q and then combining these with the Chinese remainder theorem to compute
the plaintext. That is, we can first compute

mp = cd mod p

mq = cd mod q,

and then, since the primes are relatively prime to each other, combine these
using the Chinese remainder theorem to obtain the plaintext. Using Garner’s
algorithm for example (see Menezes, van Oorschot and Vanstone [169, Section
14.5.2]), the plaintext is computed as

m = mp + p
(
(mq − mp)p−1 mod q

)
.

Thus, we have replaced one exponentiation modulo an n-bit integer with two
exponentiations modulo n/2-bit numbers in addition to several other oper-
ations. As outlined below, the single modular exponentiation in standard
decryption is computationally more expensive than all of the computations
needed in the alternate method.

139
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We will call any implementation of RSA using Chinese remaindering for
decryption, in some fashion similar to above, CRT-RSA. Also, we will refer
to the decryption method for CRT-RSA as CRT decryption, just as we use
standard decryption for standard RSA. Since the RSA primes are secret, this
method for decryption cannot, of course, be extended to encryption. Encryp-
tion for CRT-RSA is the same as that for standard RSA.

When the private exponent is greater than N1/2, a reduced exponent can
be used in each of the partial decryptions. Let dp and dq be defined as

dp = d mod p − 1
dq = d mod q − 1.

It follows from Fermat’s little theorem, that dp and dq can be used instead of
d in the partial decryptions

mp = cdp mod p

mq = cdq mod q.

We call dp and dq the CRT-exponents. It follows from their definition, and
from the RSA key equation, that they also satisfy

edp ≡ 1 (mod p − 1)
edq ≡ 1 (mod q − 1),

and so there exist integers kp and kq such that

edp = 1 + kp(p − 1)
edq = 1 + kq(q − 1),

which we call the CRT equations. When the private exponent is smaller
than each of the primes, it follows that d = dp = dq.

For CRT-RSA, we will assume that a public key is given by (e, N) and
that a private key is given by (dp, dq, p, q). In practice, the private key might
also contain the inverse p modulo q, p−1 mod q, so that this inverse does not
need to be computed when combining the partial decryptions with Garner’s
algorithm (e.g., see the PKCS#1 v2.1 standard [206]).

8.1.1 Variations of CRT-RSA

There are several ways the exponents can be chosen for CRT-RSA, depend-
ing on whether the situation demands fast encryption or decryption. Just as
with RSA, the costs can be reduced using small exponents.

In practice, a fixed small public exponent such as e = 216 + 1 or e = 3
is almost always used. It is then expected, with high probability, that the
private exponent and both of the CRT-exponents will be full sized. When the
primes are balanced, we then expect d ≈ N and dp, dq ≈ N1/2. Using such a
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small public exponent corresponds to minimizing the encryption costs at the
expense of maximizing the decryption costs.

In some situations it may be desirable to minimize the decryption costs
as much as possible. Decryption costs can be reduced by using a small pri-
vate exponent but, as shown in Chapter 5, the private exponent should be at
least N0.2929 (and probably larger) to be secure. With CRT decryption, how-
ever, Wiener [249] observed that it is possible to use CRT-exponents much
smaller than N1/4 without being insecure. In particular, in the key generation
algorithm, choosing different small CRT-exponents dp and dq first, and then
computing the public exponent e, via the Chinese remainder theorem, will re-
sult in a public exponent that is, with high probability, full sized. In addition,
the private exponent d will also, with high probability, be full sized. Thus, all
the small private attacks do not apply. Of course, the CRT-exponents cannot
be chosen too small, as the attacks in this chapter will show. CRT-RSA gen-
erated in this manner is often called Rebalanced RSA. For details of a key
generation algorithm for rebalanced RSA, see Boneh and Shacham [34]. With
rebalanced RSA, the CRT decryption costs are minimized at the expense of
maximizing the encryption (and standard decryption costs).

Typical CRT-RSA (with small public exponent) and rebalanced RSA rep-
resent the extremes for minimizing (and maximizing) encryption or decryption
costs for CRT-RSA. It is also possible to generate instances of CRT-RSA in
which the encryption and decryption costs can be more balanced. For exam-
ple, it might be desirable to have equally balanced encryption and decryption
costs. There are several key generation algorithms for CRT-RSA with arbi-
trary size public and CRT-exponents by Galbraith, Heneghan and McKee [80],
Sun and Wu [233] and Jochemsz and May [120].

8.1.2 Efficiency of CRT-RSA

Each of the variations of RSA is more efficient than using RSA with stan-
dard decryption. Following Section 1.4, let M(n) denote the complexity of
multiplying two n-bit numbers modulo another n-bit number. Consider RSA
with an n-bit modulus and private exponent d = N δ. Assuming that the pri-
vate exponent has roughly an equal number of ones and zeros in its binary
representation, we expect the complexity of decryption to be

3
2

δ nM(n).

For CRT decryption, the complexity is dominated by the two modular expo-
nentiations for the partial decryptions mp and mq. This is assuming that the
inverse p−1 mod q is precomputed when used in Garner’s algorithm. Let both
the CRT-exponents be roughly Ndp , for some 0 < δp ≤ 1/2. Assuming that
each of the CRT-exponents have roughly an equal number of ones and zeros
in their binary representations, we expect the complexity of CRT decryption
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to be

2
3
2

δp n M
(n

2

)
.

Therefore, CRT decryption is expected to be a factor

1
2

δ

δp

M(n)
M
(

n
2

) ,
faster than standard decryption. Since the complexity of M(n) can vary be-
tween almost linear and quadratic, it follows that this speed-up lies somewhere
in the range (δ/δp, 2δ/δp]. If the partial decryption for CRT decryption can
be done in parallel, then the speed-up is increased by another factor of two.
Let’s consider this speed-up for the different variations of CRT-RSA.

When the public exponent is small and the private and CRT-exponents
are full sized, we have δ ≈ 1 and δp ≈ 1/2, when the primes are balanced.
This corresponds to a speed-up by a factor in the range (2, 4]. Thus, using
CRT decryption will always be at least a factor of two faster.

When rebalanced RSA is used, the CRT-exponents are small but the pri-
vate exponent is expected to be full sized. Thus, we have δ ≈ 1 and δp � 1/2.
This corresponds to a speed-up by a factor in the range (1/δp, 2/δp]. For exam-
ple, consider an instance with a 1024-bit modulus and 160-bit CRT-exponents.
This corresponds to a speed-up in the range (6.4, 12.8]. Comparing rebalanced
RSA with a typical instance of CRT-RSA, the decryption costs are expected
to be a factor 1/δp faster. Here, the multiplication costs are the same, so only
the size of the exponents are different. Using the 160-bit CRT-exponent with
1024-bit modulus example again, this corresponds to a speed-up by a factor of
3.2 over a typical instance with 1024-bit private exponent. In an implementa-
tion by Boneh and Shacham [34], using these parameters, a speed-up of about
3.06 was achieved in practice.

For CRT-RSA with balanced exponents, since the public exponent is
smaller than φ(N), it is expected that the private exponent will be full sized.
Therefore, the same speed-up for decryption as rebalanced RSA is expected.
If the CRT-exponents are both roughly N δp , then the speed-up is expected to
be in the range (1/δp, 2/δp]. The actual value will depend on the implemen-
tation of the modular multiplication. Again, allowing the partial decryptions
to be done in parallel will double this factor.

8.1.3 Breaking CRT-RSA

We consider an instance of CRT-RSA, which is in fact also a regular in-
stance of RSA, to be broken when the factorization of the modulus is known.
Since CRT-RSA is also an instance of RSA, all of the attacks on RSA apply
to CRT-RSA. In particular, computing the private exponent d is sufficient to
break CRT-RSA since the modulus can then be deterministically factored in
polynomial time.
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Computing the CRT-exponents is also sufficient to break CRT-RSA. Given
both CRT-exponents, dp and dq, notice that multiplying together the CRT
equations, written as edp − 1 = kp(p − 1) and edq − 1 = kq(q − 1), yields

e(edpdq − dp − dq) + 1 = kpkq(p − 1)(q − 1),

where everything on the left-hand side is known. Therefore, we can compute
a multiple of φ(N) which allows us to (probabilistically) factor the modulus
using Miller’s results [173]. In addition, it follows from the above equation
that

D = −edpdq + dp + dq,

is a valid private exponent for standard decryption, which can then be used to
decrypt any ciphertext. Alternatively, a deterministic lattice-based method,
in the spirit of the results of May [163] and Coron and May [58], by Maitra
and Sarkar [155, 156] can be used to factor the modulus in polynomial time.

Given only one of the CRT-exponent, it is still expected that the modulus
can be easily factored. Suppose we are given dp. If the private exponent d
is smaller than each of the primes, so that d = dp = dq, then edp − 1 is a
multiple of λ(N) and the modulus can be (probabilistically) factored using
Miller’s results. If the private exponent d is larger than each of the primes,
notice that since edp = 1 + kp(p − 1), it follows that medp ≡ m (mod p), for
any plaintext m ∈ Z∗

p. Therefore,

medp − m = cp,

where c is some integer. Let M = (medp −m) mod N . When c is not a multiple
of the prime q, the factorization of the modulus is revealed by gcd(M, N) = p.
When c is a multiple of q, then medp ≡ m (mod N). If this holds for all m ∈
Z∗

p, then the modulus can be factored, since dp is a valid decryption exponent
(for standard decryption) and edp − 1 exposes a multiple of λ(N). Otherwise,
dp is simply a recovery exponent for the plaintext m (recall Section 3.3) and
it is not known if this information can be used to factor the modulus.

8.2 Small CRT-Exponent Attacks

When the CRT-exponents are sufficiently small there are several attacks
that can factor the modulus. The first attack shows that the modulus can be
factored, for fixed modulus size, with complexity that is dominated by dp

1/2

where dp is the smaller of the two CRT-exponents. Thus, the strength of the
attack depends on the current state-of-the-art computing capabilities. One
version of the attack is as follows.
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Attack 8.1. Let N be an RSA modulus, let e be a valid public exponent and
let d be its corresponding private exponent defined modulo λ(N). Further, let
dp = d mod p − 1 and dq = d mod q − 1 be the CRT-exponents with dp < dq

and let m be the smallest integer such that dp ≤ 2m. The modulus N can be
factored in time O(dp

1/2 log2(N)), provided that dp �≡ dq (mod 2�m/2�).

Justification: To simplify the presentation, we will assume that m is even.
When m is odd, all instances of m/2 should be replaced by m/2�. Let g > 1
be any element in Z∗

N and consider the function

G(X) =
2m/2−1∏

y=0

Gy(X) mod N =
2m/2−1∏

y=0

(
ge2m/2yX − g

)
mod N.

Writing the smaller CRT-exponent as dp = A2m/2+B, where 0 ≤ A, B < 2m/2

are uniquely defined, notice that the term GA(geB) mod N in the expression
for G(geB) satisfies

(ge2m/2AgeB − g) mod N = (ge(A2m/2+B) − g) mod N = (gedp − g) mod N.

Since gedp − g = cp, for some integer c, as described earlier, we know that
this term is a multiple of the prime p. Further, since B = dp mod N and
we are given that dp �≡ dq (mod 2m/2), there can be no other term in the
expression for G(geB) that corresponds to (gedq − g) mod N (which would
necessarily be a multiple of the prime q). It follows that, when neither c
nor any of the other terms of G(geB) are a multiple of q, the computation
gcd(G(geB), N) = p will reveal the factorization of the modulus N . Assuming
that c and the other terms of G(geB) behave as random elements in ZN , it
is extremely unlikely that any will be a multiple of q. The attack consists of
computing gcd(G(gex), N) for each x = 0, . . . , 2m/2 − 1 until (hopefully) the
prime p is exposed. Since 0 ≤ A, B < 2m/2, we are guaranteed to compute
gcd(G(geB), N).

The stated complexity of the attack is achieved by computing G(X) using
fast Fourier transform (FFT) techniques. A polynomial of degree b can be
evaluated at b points, with coefficients modulo N , in time O(b log(b)) for the
transformations and time O(b log2(N)) for the b multiplications (see Turk [243]
for example). Since b = 2m/2 ≈ dp

1/2, log(dp) < log(N), and all (individual)
operations can be done in time polynomial in log(N), the result follows. �

When the CRT-exponents are of size N δ, for some 0 < δ < 1/2, the
complexity of the attack is exponential (in the size of the modulus). In
practice, assuming fixed computational resources, the attack becomes weaker
with increasing modulus size. Using dp

1/2 log2
2(N) as a crude guide, the CRT-

exponents should be at least 120 bits long for 1024-bit moduli and at least
184 bits for 2048-bit moduli in order for this attack to match the current
estimated complexity of factoring the modulus for those sizes.
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The next two attacks can factor the modulus if the CRT-exponents are
smaller than some fraction of bits of the modulus. Both attacks are based on
the equation

e2dpdq + edp(kq − 1) + edq(kp − 1) − (N − 1)kpkq − (kp + kq − 1) = 0,
(8.1)

which is obtained (after some rearrangement) by multiplying together the two
CRT key equations when written as

edp + kp − 1 = kpp

edq + kq − 1 = kqq.

The first attack factors the modulus by solving equation (8.1) when reduced
modulo the public exponent e. The attack can only be mounted for public
exponents N1/4 ≤ e ≤ N3/4, however, and so it only applies to CRT-RSA
with both small public and CRT-exponents. The original attack, by Galbraith,
Heneghan and McKee [81, Section 5.1], uses continued fractions to recover the
unknowns. We restate the result, using Coppersmith’s method, in the following
attack.

Attack 8.2. For every ε > 0, there exists an n0 such that for every n > n0 the
following holds: Let N = pq be an n-bit RSA modulus with balanced primes,
let e = Nα be a valid public exponent and let d be its corresponding private
exponent defined modulo λ(N). Let dp = d mod p − 1 and dq = d mod q − 1
be the CRT-exponents such that dp, dq < N δ. For public exponents 1/4 ≤ α ≤
3/4, if the CRT-exponents satisfy

δ <
1
2
− 2

3
α − ε,

then the modulus N can be factored in time polynomial in n, provided that
Assumptions 2.15 and 2.14 hold.

The attack is mounted in two stages. First, kp and kq are recovered using
Coppersmith’s methods. Reducing equation (8.1) modulo e yields the equation

(N − 1)kpkq + kp + kq − 1 ≡ 0 (mod e),

where kp and kq are the only unknowns. Using Coppersmith’s methods to find
small roots of the polynomial fe(x, y) = (N − 1)xy + x + y − 1 modulo e, the
root (x0, y0) = (kp, kq) can be recovered when δ < 1/2−2α/3− ε. The second
stage of the attack then uses kp (or kq) to factor the modulus. From the CRT
key equation edp = 1 + kp(p − 1), it follows that

p ≡ 1 − k−1
p (mod e).

When the public exponent is larger than the prime p (or q), it follows that
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knowledge of kp (or kq) immediately reveals the factorization since the above
congruence becomes an equality. When the public exponent is smaller than
the primes but larger than N1/4, we can compute p̃ as

p̃ = 1 − k−1
p mod e,

which corresponds to the N1/4 least significant bits of the prime p (in the
relaxed sense). Using Theorem 6.1 from Chapter 6, we can then compute the
remaining unknown bits of p and hence factor the modulus. For more detail
see Galbraith et al. [81], which includes the continued fraction approach to
recovering kp and kq and several methods for factoring N (or obtaining dp)
given kp, and Jochemsz and May [120, Appendix B] for the lattice-based
approach.

The final attack that we consider, by Jochemsz and May [120], uses equa-
tion (8.1) as given and can be mounted on any instance of CRT-RSA without
restrictions on the size of the public exponent. We restate their result in the
following attack.

Attack 8.3. For every ε > 0, there exists an n0 such that for every n > n0 the
following holds: Let N = pq be an n-bit RSA modulus with balanced primes,
let e = Nα be a valid public exponent and let d be its corresponding private
exponent defined modulo φ(N). Let dp = d mod p−1 and dq = d mod q−1 be
the CRT-exponents such that dp, dq < N δ. For any τ ≥ 0, when 1/2 ≤ α ≤ 1
and

δ <
(5 + 20τ + 18τ2) − 4α(1 + 4τ + 3τ2)

2(1 + τ)(7 + 21τ + 12τ2)
− ε, (8.2)

or when 1/6 ≤ α < 1/2 and

δ <
(5 + 20τ + 27τ2 + 12τ3) − α(4 + 16τ + 30τ2 + 24τ3)

2(1 + τ)(7 + 21τ + 12τ2)
− ε, (8.3)

then the modulus N can be factored in time polynomial in n, provided that
Assumptions 2.15 and 2.14 hold.

The attack is a “straightforward” application of Coppersmith’s techniques
for finding small solutions of equation (8.1) using the generalized bounds tech-
nique of Jochemsz and May [119]. The attack looks for small roots of the
polynomial f(x1, x2, x3, x4) ∈ Z[x1, x2, x3, x4] given by

f = e2x1x2 + ex1x4 − ex1 + ex2x3 − ex2 − (N − 1)x3x4 − x3 − x4 + 1,

since f(dp, dq, kp, kq) = 0. The polynomial is obtained by simply replacing
dp, dq, kp and kq in equation (8.1) with the unknowns x1, x2, x3 and x4. We
use straightforward in quotes because the work in deriving the bounds and
implementing the attack are non-trivial for such a complex polynomial. For
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FIGURE 8.1: Theoretical bounds for small CRT-exponent attacks.

a full justification of the result, we refer the reader to Jochemsz and May’s
original work [120, §4].

The bounds for δ in this attack can be easily optimized for specific public
exponent sizes. We illustrate these optimal bounds, along with the bounds
from Attack 8.2, in Figure 8.1 as a function of the public exponent size. As
can be seen, Attack 8.2 is stronger for small public exponents and Attack 8.3
is stronger for larger public exponents (with a crossover point at α ≈ 0.375).
It should be noted that Attack 8.3 applies to even smaller public exponents
(α ≥ 1/6) even though they are not included in the plot.

When the public exponent is full sized, corresponding to Wiener’s Rebal-
anced RSA, Attack 8.3 has an optimal bound

δ < 0.0734 − ε, (8.4)

when τ ≈ 0.3817882. For a 1024-bit modulus, this corresponds to CRT-
exponents with bitlength 75. In this case, Attack 8.1 can (feasibly) break
instances of CRT-RSA with larger CRT-exponents. As the size of the modu-
lus increases, however, Jochemsz and May’s attack becomes stronger.
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8.3 Partial Key Exposure Attacks

There are two partial key exposure attacks on CRT-RSA, by Blömer and
May [21], that require some of the bits of one of the CRT-exponents to be
known. Both of the attacks use Corollary 2.9 to factor the modulus. Recall
that Corollary 2.9, as applied to RSA with balanced primes, states that the
modulus N can be factored in polynomial time if a multiple of one of the RSA
primes is known to within an additive error of at most cN1/4, for any small
constant c, provided that the modulus N does not divide the multiple.

To simplify the presentation, we will use p to denote either of the RSA
primes in the description (and proofs) of the attacks. The first attack requires
some of the most significant bits of one of the CRT-exponents and can be
mounted when the public exponent is smaller than N1/4. The result (attack
and proof technique) is from Blömer and May [21, Theorem 3].

Theorem 8.4. Let N be an RSA modulus with balanced primes, let e be a
valid public exponent of size e = Nα ≤ N1/4, and let the CRT-exponent dp

satisfy edp ≡ 1 (mod p − 1). Given d̂p such that

|dp − d̂p| ≤ N
1
4−α,

the modulus can be factored in time polynomial in log(N).

Proof: If we let dp = d̂p + d0, for unknown d0, then the CRT key equation
e(d̂p + d0) = 1 + k(p − 1) can be rearranged as

ed̂p − kp = 1 − k − ed0 = −(ed0 + k − 1).

Since |d0| = |dp − d̂p| < N1/4−α and |k| < e ≤ N1/4, it follows that

|ed0 + k − 1| < |ed0 + k| < |ed0| + |k| < NαN1/4−α + N1/4 = 2N1/4,

and so |ed̂p − kp| < 2N1/4. Thus, ed̂p is a good enough approximation of
kp to apply the results of Corollary 2.9, provided that kp is not a multi-
ple of N . All that remains is to show that N � kp, but this follows since
kp < ep < N1/4p < N (for balanced primes). Therefore, using ed̂p as our
approximation for kp in Corollary 2.9, we can factor the modulus in time
polynomial in log(N). �

When the CRT-exponents are full sized (dp, dq ≈ N1/2) the attack can be
used to factor the modulus when (1/2+2α) of the most significant bits of one
of the CRT-exponents are given. When a small public exponent is used, such
as e = 3 or e = 216 + 1, the attacks requires slightly more then 1/2 of the
most significant bits of ons of the CRT-exponents.
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The second partial key exposure attack can factor the modulus when
enough of the most or least significant bits of one of the CRT-exponents is
known provided that the public exponent is very small. The following result
(and proof technique) is a simple generalization of Blömer and May’s known
least significant bits attack [21, Theorem 2].

Theorem 8.5. Let N = pq be an RSA modulus with balanced primes, let e
be a valid public exponent satisfying e � N1/2, and let the CRT-exponent dp

satisfy edp ≡ 1 (mod p − 1). Given d̃p and M such that d̃p = dp mod M and

M ≥ N1/4,

or, given d̂p such that

|dp − d̂p| ≤ N1/4,

the modulus can be factored in time polynomial in log(N) and e.

Proof: We begin by first assuming that we know the constant k in the CRT
equation edp = 1 + k(p − 1). Also, since the primes are balanced and since
k < e � N1/2, we know that k cannot be a multiple of either of primes in the
modulus. This will be needed in both cases.

Consider the known least significant bits case. Let dp = d̂M + d̃p, where
the unknown d̂ satisfies

|d̂| =

∣∣∣∣∣dp − d̃p

M

∣∣∣∣∣ <
∣∣∣∣ dp

M

∣∣∣∣ < 2N1/4,

since M ≥ N1/4 and dp < p < 2N1/2. Substituting dp = d̂M + d̃p into the
CRT key equation, and rearranging, we obtain

ed̃p + k − 1 = kp − ed̂M.

Letting E = (eM)−1 mod N , so that EeM = 1 + cN for some integer c, we
multiply the above equation by E to obtain

E(ed̃p + k − 1) = Ekp − (1 + cN)d̂ = (Ek − cd̂q)p − d̂,

where we have assumed that the inverse exists (i.e., gcd(eM,N) = 1). If the
inverse does not exist, then gcd(eM,N) > 1 will reveal one of the primes
in the modulus, and hence the factorization of the modulus, since eM < N .
Letting K = Ek − cd̂q, notice that

|E(ed̃p + k − 1) − Kp| = | − d̂| < 2N1/4,

so that the quantity E(ed̃p + k− 1) is be a good enough approximation of Kp
to apply the results of Corollary 2.9 to factor the modulus, provided Kp is
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not a multiple of N (or equivalently, provided K is not a multiple of q). But
q | K implies that q | k, since q is prime and gcd(E, q) = 1, which we have
already shown does not hold. Therefore, Kp cannot be a multiple of N and
we can apply Corollary 2.9 to factor the modulus.

Now consider the known most significant bits case (which is essentially the
same). Let dp = d̂p+d0, where the unknown d0 satisfies |d0| = |dp−d̂p| < N1/4.
Substituting dp = d̂p + d0 into the CRT key equation, and rearranging, we
obtain

ed̂p + k − 1 = kp − ed0.

Letting E now be defined as E = e−1 mod N , so that Ee = 1 + cN for some
integer c, we multiply the above equation by E to obtain

E(ed̂p + k − 1) = Ekp − (1 + cN)d0 = (Ek − cd0q)p − d0,

where, again, we assume that the inverse exists (otherwise we could factor the
modulus immediately). Note that since E exists we know that gcd(E,N) = 1
and so E cannot be a multiple of the prime q. Now, letting K = Ek − cd0q,
notice that

|E(ed̂p + k − 1) − Kp| = | − d0| < N1/4,

and so the quantity E(ed̂p + k − 1) is a good enough approximation of Kp to
apply the results of Corollary 2.9 to factor the modulus, provided Kp is not
a multiple of N . Since k and E cannot be multiples of the prime q, it follows
that K cannot be a multiple of q and hence Kp cannot be a multiple of N .
Therefore, we can apply Corollary 2.9 to factor the modulus.

In both cases, when the constant k in the CRT key equation is known,
we can use Corollary 2.9 to factor the modulus in time polynomial in log(N).
Since k is not known, however, we perform a brute force search over all pos-
itive integers k′ < e, computing candidates for Kp (for the particular case)
and applying Corollary 2.9 to try and factor the modulus. Eventually, k′ = k
and the modulus will be factored using the correct value of Kp. Since there at
most e candidates for Kp (values of k′) and each candidate requires time that
is polynomial in log(N) to try and factor the modulus, the result follows. �

In order for the attack to maintain an overall complexity that is polynomial
in log(N), the public exponent must also be polynomial in log(N). That is, the
size (bitlength) of the public exponent should be O(log(log(N))). Therefore,
the public exponent must be very small for this attack to be efficient. For
example, instances of CRT-RSA with the common public exponents e = 3
and e = 216 + 1 can be susceptible to this attack. For these instances, it is
expected that the CRT-exponents will be full sized (dp, dq ≈ N1/2) and so
the attack can be used to factor the modulus when 1/2 of the most or least
significant bits of one of the CRT-exponents are given.
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8.4 Key Reconstruction with Random Errors

We end this chapter by briefly describing a method for the key reconstruc-
tion problem when CRT-RSA is used.

Recall that the key reconstruction method by Halderman et al. [95], briefly
described in Section 6.5, only uses approximations of the RSA primes along
with the equation N = pq to reconstruct the private key. It is mentioned
in [95], that the attack can be improved by using more information about
the private key. Indeed, an improved attack, by Heninger and Shacham [99]
for small prime public exponent CRT-RSA, uses approximations of each of
p, q, d, dp, dq, from the CRT-RSA private key, and exploits the four equations

N = pq

ed = k(N − p − q + 1) + 1
edp = kp(p − 1) + 1
edq = kq(q − 1) + 1,

(8.5)

which have eight unknowns. However, since the public exponent is small, 216+
1 for example, the constants k, kp and kq can be easily determined which
reduces the number of unknowns to only five.

The determination of k (the constant from the standard key equation)
follows from Theorem 4.6. In particular, since 1/2 of the most significant bits
of the private exponent are revealed by (kN + 1)/e�, computing this value
for each 2 ≤ k′ < e, the correct k is revealed when a significant number of
the high bits of the approximation for the private exponent matches the high
bits of (k′N + 1)/e�. Provided that the public exponent is small enough and
that the fraction of bits that are correct (in the private exponent) is not too
small, it is expected that only the correct value of k will yield a good match.
Thus, the constant k can be easily determined.

With k known, Heninger and Shacham show that solving for the constants
in the CRT key equations, kp and kq, follows easily. Reducing all three key
equations modulo the public exponent and rearranging yields

−1 ≡ k(p − 1)(q − 1) (mod e)
−1 ≡ kp(p − 1) (mod e)
−1 ≡ kq(q − 1) (mod e).

(8.6)

Notice that multiplying the last two equations together produces the equation
1 ≡ kpkq(p − 1)(q − 1) (mod e), which, when compared to the first equation
shows that all three constants (of the key equations) are related by

k ≡ −kpkq (mod e).
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Writing the first equation from (8.6) as

−1 ≡ k(N − p − q + 1) ≡ k(N − 1) − k(p − 1) − k(q − 1) (mod e),

we can substitute k ≡ −kpkq, (p−1) ≡ −1/kp and (q−1) ≡ −1/kq, to obtain

k(N − 1) − kp − k/kp + 1 ≡ 0 (mod e),

which, when multiplied through by kp leads to the quadratic equation

k2
p − (k(N − 1) + 1

)
kp − k ≡ 0 (mod e).

This equation, with the public exponent e being prime, has exactly two so-
lutions: kp mod e and kq mod e. Since kp, kq < e, however, it follows that the
exact values of kp and kq are revealed by solving this equation. Thus, the value
of kp (and kq) is narrowed down to just two candidates.

With the constants from the key equations (k, kp, kq) known, the actual key
reconstruction algorithm essentially consists of enumerating all possible keys
(p, q, d, dp, dq) that do not violate the equations in (8.5). The candidate keys
are iteratively reconstructed from the least significant bits up and candidates
are pruned when any violation occurs. For full details of the algorithm, see
[99, Section 3].

Heninger and Shacham analyze the runtime of their algorithm (using
branch analysis and probability generating functions) and show bounds on
the fraction of bits needed from the private key so that the number of to-
tal candidate keys needed to be tested remains small with high probability.
In particular, for an n-bit modulus, they show that given 0.27 of the bits of
p, q, d, dp, dq, the probability that there will be more than 9n2 +71n candidate
keys is less than 1/n2. When approximations of only p, q and d are available,
then 0.42 of the bits are enough so that the probability that there are no more
than 22n2 + 24m candidate keys is less than 1/n2. Finally, when only some
of the bits of the primes are known, then 0.59 of the bits are enough so that
the probability that there are no more than 29n2 +29m candidate keys is less
than 1/n2. For full details of the analysis, see [99, Section 4].

8.5 Additional Notes

The idea of using Chinese remaindering for decryption appears as early as
the patent application for RSA [205]. However, it is mentioned in the context
of using a modulus with more than two factors and the intention does not
seem to be for the purpose of speeding up decryption. The first observation
that Chinese remaindering can be used to speed up decryption seems to be by
Rabin [199] (in comparing the efficiency of his scheme with RSA), however, its
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use, in practice and in the literature, did not become popular until Quisquater
and Couvreur’s work [198], which is often cited as being the origin of CRT-
RSA.

Another CRT-based variant of RSA, by Bajard and Imbert [10], performs
both encryption and decryption in the Residue Number System (RNS). The
implementation is well suited for a fast hardware implementation of RSA.

There are several attacks on CRT-RSA with small CRT-exponents when
the primes are unbalanced. Let the smaller prime satisfy q = Nβ , for some
β ≤ 1/2, and the CRT-exponent (for the larger prime p) satisfy dp < N δ.
May [161] presents a provable attack when

δ ≤ 1
2
− 3

2
β +

1
2
β2 − ε,

and a heuristic attack (using Coppersmith’s methods) when

δ ≤ 1 − 2
3
β +

2
3

√
3β + β2 − ε.

Bleichenbacher and May [19, Theorem 5] present an improved attack (using
Coppersmith’s methods) with bound

δ ≤ 1 − 2
3
β − 1

3
β2 − 1

4

√
12αβ − 12αβ2 + 4β2 − 5β5 + β4 − ε, (8.7)

where the public exponent has size Nα. When the public exponent is full sized,
the attack works up to β ≈ 0.468.

Partial key exposure attacks on CRT-RSA with unbalanced primes are
considered by Lee, Park and Kwon [140].

Algorithms for constructing instances of CRT-RSA with arbitrary pub-
lic and CRT-exponents were first proposed, independently by Galbraith,
Heneghan and McKee [80] and Sun and Wu [233]. Another algorithm was
later given by Jochemsz and May [120].

§8.2 Another small CRT-exponent attack with complexity dominated by the
square of the CRT-exponents O(d1/2

p ) is given by Qiao and Lam [197].
The small CRT-exponent attack by Bleichenbacher and May on CRT-RSA

with unbalanced primes (mentioned above) also applies to balanced primes.
Letting β = 1/2 in the bound (8.7) yields an attack with bound

δ <
7
12

− 1
12

√
7 + 48α − ε,

and works for public exponents up to α ≤ 7/8. In a second attack on small
CRT-exponent CRT-RSA, [19, Section 5], Bleichenbacher and May linearize
equation (8.1) to construct a heuristic lattice-based attack with bound

δ < min{ 2
5 (1 − α) − ε, 1

4 − ε}.
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When the difference between the CRT-exponents dp and dq is known,
an attack by Jochemsz and May [119], can factor the modulus when δ <
0.0986 − ε. This is the strongest known attack on small CRT-exponent CRT-
RSA. The result was used to attack a signature scheme (using RSA) proposed
by Qiao and Lam [197].

§8.3 The result in Theorem 8.5 is a simple extension of Blömer and May’s
partial key exposure attack with known least significant bits [21, Theorem
2]. The result can very easily be further generalized to use some of the most
and least significant bits of one of the CRT-exponents. For full sized CRT-
exponents, the attack would require that at least 1/2 of the bits, coming from
some combination of the most and least significant bits, be known.

The result in Theorem 8.5 can also be made fully general by applying
the results of Herrmann and May [101]. For example, assuming full sized
CRT-exponents, when there are two blocks of unknown bits, the modulus can
be factored if least 0.5858 bits are known and when the known bits are in
any positions, the modulus can be factored if at least 0.694 bits are known.
However, the complexity of Herrmann and May’s result is exponential in the
number of blocks of known bits and so this latter bound is more theoretical
in nature.



Chapter 9

Multi-Prime RSA

In this chapter we consider a simple variant of RSA in which the modulus has
three or more distinct primes. The variant, which we call multi-prime RSA,
allows for faster key generation and CRT decryption compared to RSA. Some
of the content in this chapter has been published in [107]:

J. Math. Crypt. 2 (2008), 117–147. c© de Gruyter 2008.

It is reproduced here with permission of the publisher.

9.1 Multi-Prime RSA

Multi-prime RSA is a simple extension of RSA in which the modulus has
three or more distinct primes. We will, however, consider RSA as a special
case of multi-prime RSA in which there are only two primes. The advantages
of using more than two primes in the modulus is that key generation and
decryption with Chinese remaindering are more efficient than standard RSA.
The costs of both of these operations decrease with increasing number of
primes in the modulus.

Most of the notation and assumptions that we use in this chapter are direct
extensions of those used for RSA. Having two primes in the modulus recovers
the same definition or property for RSA. For convenience, when referring to
multi-prime RSA with r primes in the modulus, we will often use the term
r-prime RSA.

For multi-prime RSA with r primes, the modulus N = p1 · · · pr is simply
the product of r distinct primes. As with RSA, we only consider multi-prime
RSA with balanced primes. If we label the primes so that they are in increasing
value, pi < pi+1 for i = 1, . . . , r − 1, then we assume that

4 <
1
2
N1/r < p1 < N1/r < pr < 2N1/r. (9.1)

The key generation algorithm for multi-prime RSA is essentially the same
as for RSA, except that the modulus requires r random distinct balanced
primes instead of two. The public and private exponents are defined as inverses
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modulo φ(N), so that

ed ≡ 1 (mod φ(N)), (9.2)

which we call the key relation and from this equivalence, we obtain the key
equation

ed = 1 + kφ(N), (9.3)

where k is some positive integer. Like RSA, we can replace φ(N) with N − s.
Expanding φ(N), it follows that s can be written as

s = N − φ(N)

= N −
r∏

i=1

(pi − 1)

=
r∑

i=1

N

pi
−

r∑
i,j=1
i<j

N

pipj
+

r∑
i,j,k=1
i<j<k

N

pipjpk
+ · · · + (−1)r.

As shown in [109], this expression for s, combined with the condition for
balanced primes (9.1), implies an upper bound on the size of s given by

|s| < (2r − 1)N1−1/r. (9.4)

Thus, φ(N) and N have about (r − 1)/r of their most significant bits in
common and so N is a good approximation for φ(N). As the number of primes
increases, however, the fraction of bits that they have in common decreases.
As will be seen, most attacks on RSA can be extended to attacks on multi-
prime RSA by simply using this bound for |s| when there are r primes in the
modulus. Notice that letting r = 2 recovers the bound for RSA.

The encryption algorithm for multi-prime RSA is identical to that of RSA.
For any plaintext message m, the ciphertext is simply c = me mod N . The
public exponent will usually be denoted by e = Nα, for some 0 < α < 1.

Just as with RSA, there are two kinds of decryption algorithms. Standard,
or textbook, decryption for multi-prime RSA is identical to that of RSA. Given
a ciphertext c, the plaintext is computed as m = cd mod N , where d is the
private exponent. The private exponent is denoted by d = Nβ or d = N δ,
for some 0 < β, δ ≤ 1. For partial key exposure attacks, we let d = Nβ and
use δ as an estimate of the unknown part of d. For example, if d̂ is a known
approximation to d, we let the unknown part satisfy |d− d̂| ≤ N δ. In all other
scenarios, we let d = N δ.

When decryption uses Chinese remaindering, the decryption algorithm for
multi-prime RSA is the obvious extension to the decryption algorithm for
CRT-RSA. Here, we simply compute r partial decryptions and then combine
them with Garner’s algorithm. In this case, the private exponent is denoted
by d = Nβ and the CRT-exponents, di = d mod (pi − 1), each satisfy di <
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N δ, for some 0 < δ ≤ 1/r. We will refer to multi-prime RSA using Chinese
remaindering for decryption as CRT multi-prime RSA, or simply multi-prime
RSA with CRT decryption.

The public key is simply (e, N) and the private key is (d, p1, . . . , pr). Other
information can be included in the private key to speed up the decryption
algorithm. For example, the PKCS#1 v2.1 standard [206] includes the inverses
of p1 mod p2, p1p2 mod p3, . . . , and p1 · · · pr−1 mod pr, so that they do not
need to be computed when decryption uses Chinese remaindering.

9.1.1 Efficiency of Multi-Prime RSA

The key generation algorithm for multi-prime RSA needs to generate r
random primes that are all roughly the same size. For a modulus N , each prime
should be roughly equal to N1/r. For RSA, two equally sized random primes
of size N1/2 need to be generated. For an n-bit modulus, the total number of
random bits needed for each is the same. However, since the primality tests are
super-linear in the size of the primes, the overall complexity of generating all
of the (n/r)-bit primes for multi-prime RSA is lower than generating the two
(n/2)-bit primes for RSA. The exact (expected) difference in key generation
times will depend on the specific algorithms used to implement the arithmetic.
In general though, the key generation for multi-prime RSA will decrease with
increasing number of primes. See Section 1.4 for more information regarding
key generation for RSA.

Encryption in multi-prime RSA is the same as RSA and so the costs are
the also the same. When standard decryption is used, the decryption costs are
also the same. Thus, the only benefit of using multi-prime RSA with standard
decryption is the reduced key generation costs.

When Chinese remaindering is used for decryption, however, the decryp-
tion costs are lower than the decryption costs for CRT-RSA. The dominant
costs in the decryption algorithm will be the r partial decryptions, which
are simply modular exponentiations. From the discussion in Section 1.4, the
expected costs for decryption will be

r
3
2

δ nM
(n

r

)
,

when the CRT-exponents are of size N δ for an n-bit modulus. Here, we assume
that the number of ones and zeros in the binary representation of the CRT-
exponents are roughly the same. This is compared to

2
3
2

δ nM
(n

2

)
,

for CRT-RSA. It follows that decryption costs for multi-prime RSA are always
lower than for CRT-RSA. We consider two scenarios of multi-prime RSA in
more detail.

When a small public exponent is used, the CRT-exponents are expected to
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be full sized. Thus, we can replace δ with 1/r for multi-prime RSA and with
1/2 for CRT-RSA. In this scenario, the ratio of decryption costs of CRT-RSA
over multi-prime RSA is M(n/2)/M(n/r). Since the complexity of M(n) can
vary between almost linear and quadratic, it follows that this ratio lies in the
range (r/2, r2/4]. Thus, a speed-up of a factor at least r/2 is expected. When
M(n) is quadratic in n, this leads to a speed-up of r2/4. In an implementation
by Boneh and Shacham [34], using the GMP [88] big integer package, a speed-
up by a factor of 1.73 was observed for 3-prime RSA compared to to CRT-RSA
with a 1024-bit modulus. Notice that this observed speed-up lies within the
predicted range (r/2, r2/4] = (1.5, 2.25] when r = 3.

When small CRT-exponents are used, the ratio of decryption costs for
CRT-RSA (rebalanced RSA) over decryption costs for multi-prime RSA will
be 2M(n/2)/(rM(n/r)). Since we know that M(n) can vary between almost
linear and quadratic, it follows that this ratio lies in the range (1, r/2]. In prac-
tice, the complexity of M(n) will not be extremely close to linear. Therefore,
it is expected that the decryption costs for multi-prime RSA will be lower.
The idea of using small CRT-exponents for multi-prime RSA was suggested
by Paixão [192].

The efficiency of both key generation and CRT decryption improves as the
number of primes in the modulus increases. While this might suggest using
many primes in the modulus, a trade-off must be made for security. As the
number of primes increases, for a fixed modulus size, the size of each prime
factor decreases, which makes the modulus easier to factor with the ECM
method for factoring.

9.1.2 Breaking Multi-Prime RSA

We will consider an instance of multi-prime RSA to be broken when the
factorization of the modulus is known. For RSA, it was sufficient to recover
the private exponent or to compute φ(N) since there are deterministic (poly-
nomial time) algorithms that can factor the modulus given either of these.
For multi-prime RSA there are no known equivalent results. That is, there
are no known deterministic algorithms that can factor the modulus given the
private exponent or φ(N). However, once a multiple of φ(N) is known, the re-
sults of Miller [173] can be used to probabilistically factor the modulus. Since
ed − 1 = kφ(N), it is therefore sufficient to obtain the private exponent in
order to (probabilistically) factor the modulus.

9.2 Factoring the Modulus

In practice, the security of RSA is based on the difficulty of factoring the
modulus. For example, the estimated time complexity to factor a 1024-bit
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RSA modulus with balanced primes is roughly 280 (using the NFS). Thus,
RSA with a 1024-bit modulus offers, roughly, the same security as an 80-bit
one time pad.

The security of multi-prime RSA, like that of RSA, is also based on the
security of factoring the modulus. Here, the difficulty of factoring an n-bit
multi-prime RSA modulus should be no less difficult than factoring an n-bit
RSA modulus, to achieve the same security as the RSA modulus. Since the
difficulty of factoring a multi-prime RSA modulus, for a fixed modulus size,
decreases with increasing number of primes in the modulus when using the
ECM for factoring, the number of primes in the modulus must be chosen
with care. In particular, the number of primes in the modulus must be small
enough so that the expected complexity of the ECM is not less than the
expected complexity of the NFS. Any number of primes r that satisfies this
condition is considered a safe number of primes for that modulus size. Also,
since the complexity of the ECM is dominated by the size of the smallest
factor of N , it follows that all the primes should be roughly the same size in
order to maximize the runtime of the ECM. Thus, balanced primes are always
used in multi-prime RSA moduli.

In Table 9.1, the maximum safe number of (balanced) primes rmax for
several common modulus sizes is given. The data is taken from [48], and was
determined by the crossover point of the expected runtimes of the NFS and
ECM for each modulus size (recall equations (2.1) and (2.2)). The security
of multi-prime RSA, for a given modulus size, will be the same for all safe
values of r. Once the number of primes is increased beyond the maximum
number given in Table 9.1 however, the security is decreased. And, once the
safe number of primes has been exceeded, the level of security of multi-prime
RSA, for a fixed modulus size, continues to decrease with increasing number
of primes. As will be seen in the remainder of this chapter, this trend is the
opposite of almost all of the attacks against multi-prime RSA.

TABLE 9.1: Maximum number of
safe primes for multi-prime RSA

Bitlength 1024 4038 4096 8192
rmax 3 3 4 5

9.2.1 Factoring with a Hint

When enough of the most or least significant bits of all but one of the multi-
prime RSA primes are known, the modulus can be factored. The attack, which
is a generalization of the factoring with a hint attack for RSA (Theorem 6.1),
is given in the following theorem.

Theorem 9.1. Let N be an r-prime RSA modulus with balanced primes. For
any s ∈ [2, r], given r− s of the primes in the factorization of N , (s− 1)/s of
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the most or least significant bits of one of the unknown primes, (s−2)/(s−1)
of the most or least significant bits of another one of the unknown primes,
. . . , 2/3 of the most or least significant bits of another one of the unknown
primes and 1/2 of the most or least significant bits of one of the two remaining
unknown primes, then the modulus N can be factored in time polynomial in r
and log N .

The proof follows by repeatedly applying Corollary 2.9 to compute one
prime factor of the modulus at a time. Recall that Corollary 2.9, for linear
factors, states that a factor p of N , such that p ≥ Nβ , can be efficiently
computed if at least 1− β of the most or least significant bits of p are known.
With each new factor obtained, a new (reduced) modulus is computed by
removing the newly found prime from the previously used modulus. Since
each iteration of Corollary 2.9 uses a smaller modulus, but the primes remain
the same size, the fraction of bits needed from the next prime is reduced. For
example, when the modulus has three prime factors, each prime is initially
about 1/3 the size of the modulus (in bitlength). Once one of the primes is
computed, the remaining primes are about 1/2 the size of the new (reduced)
modulus (the original modulus divided by the found prime). Therefore, we
need at least 2/3 of the bits of the first prime and only at least 1/2 of the
bits of the second. In addition, depending on the size of the modulus, after
one or more of the primes are obtained and removed from the modulus, the
(reduced) modulus may be small enough to be efficiently factor with other
methods.

Notice that Theorem 9.1 implies an upper bound on the minimum total
number of bits needed to factor a balanced r-prime RSA modulus. In partic-
ular, sufficiently large balanced r-prime RSA moduli N can be factored given
r− s of the primes in N and an additional fraction of bits, relative to the size
of N , given by

1
r

(
s − 1

s
+

s − 2
s − 1

+ · · · + 1
2

)
=

1
r

(s − Hr) , (9.5)

where Hn is the n-th harmonic number (Hn =
∑n

i=1 1/k).

The actual number of bits is roughly log2(N) times the bound in 9.5. We
illustrate this bound for the first few values of r and each possible choice of
υ = r−s (number of initially known primes) in Table 9.2. The table shows the
fraction of bits as the sum of the contributions of the known primes and the
partially known primes. The fraction is relative to the size of the modulus (i.e.,
the fraction times log2(N) gives, roughly, the total number of actual bits). It
should be noted that the bounds are, in practice, somewhat optimistic since
infeasibly large lattice dimensions will be needed to achieve these bounds.
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TABLE 9.2: Fraction of bits required
for factoring with a hint

υ = 0 υ = 1 υ = 2 υ = 3
r = 2 0.250 – – –
r = 3 0.389 0.500 – –
r = 4 0.479 0.542 0.625 –
r = 5 0.543 0.583 0.633 0.700

(J. Math. Crypt. 2 (2008), 117–147. c© de Gruyter 2008. Used with permission.)

9.3 Small Private Exponent Attacks

All of the known small private exponent attacks on multi-prime RSA are
extensions of attacks on RSA. In particular, each of the small private exponent
attacks on RSA from Chapter 5 has been extended to multi-prime RSA. As
will be seen, all of the attacks become less effective when increasing the number
of primes in the modulus.

The extension of Wiener’s attack to multi-prime RSA yields the weakest
of the attacks in terms of the bounds on the private exponent, but, just as
with RSA, the attack is very efficient in practice and provably works. Wiener’s
attack, as given in Theorem 5.1, can be restated for multi-prime RSA in the
following theorem.

Theorem 9.2. For every integer r ≥ 2 the following holds: Let N be an r-
prime RSA modulus with balanced primes, let e be a valid public exponent,
and let d be its corresponding private exponent. Given the public key, if the
private exponent satisfies

d ≤ N

2ks
≤ N1/r

2k(2r − 1)
,

then the modulus can be (probabilistically) factored in time polynomial in
log N .

The proof follows from the proof of Theorem 5.1 using the key equation for
multi-prime RSA as a starting point. Since the exponents are defined modulo
φ(N) for multi-prime RSA, the proof is actually simpler than for RSA (which
was proved using λ(N)). When the bound in Theorem 9.2 is satisfied, one of
the convergents in the continued fraction expansion of e/N will be k/d, which
can be used to compute �e(d/k)� = φ(N). With φ(N) known, Miller’s result
[173] can be used to (probabilistically) factor the modulus. Since gcd(k, d) = 1,
the denominator of the correct convergent is simply the private exponent d.
Therefore, in practice it is expected that all incorrect convergents can be iden-
tified by simply trying to decrypt the ciphertext of a random (known) plaintext
using the denominator of that convergent. With very high probability, only
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the private exponent will be able to decrypt a random ciphertext and so with
very high probability the first convergent that passes this test will be the cor-
rect convergent. A weaker version of the attack need only recover the private
exponent. Thus, once a convergent with denominator that can decrypt several
random ciphertexts is found, that denominator is, with high probability, the
private exponent.

Letting the e = Nα and d = N δ, the bound on the private exponent in
Theorem 9.2 can be simplified as

δ ≤ 1 − α

2
+

1
2r

− ε,

where ε = logN (2(2r − 1)) can be made arbitrarily small by considering large
enough N . In the typical case, for small private exponent multi-prime RSA,
the public exponent will be roughly the same size as the modulus (α ≈ 1) and
the bound for the attack is given by

δ ≤ 1
2r

− ε.

The attack be can strengthened or weakened, just like for RSA, by using
a large or small public exponent, respectively. In particular, notice that the
attack is strongest when α ≈ (r − 1)/r, with a bound δ < 1/r − ε, and that
the attack is completely ineffective when α ≥ 1 + 1/r. Letting r = 2 recovers
the same observations made for RSA in Section 5.1.

All of the lattice-based attacks on RSA are also easily extended to multi-
prime RSA. The attacks are essentially the same, except that the modulus can
only be probabilistically factored using Miller’s results [173]. The justifications
for these attacks follow directly from the justifications of their corresponding
attacks on RSA, using the bound s < (2r − 1)N1−1/r instead of s < 3N1/2.
Letting r = 2 in each of the attacks recovers the original results for RSA (and
the actual attacks themselves).

The generalization of Boneh and Durfee’s lattice-based attack, originally
from [29, Section 6] and restated in Attack 5.3, is given in the following attack.

Attack 9.3. For every ε > 0 and integer r ≥ 2 there exists an n0 such that,
for every n > n0, the following holds: Let N be an n-bit r-prime RSA modulus
with balanced primes, let e Nα be a valid public exponent and let d = N δ be
its corresponding private exponent. Given the public key (N, e), if the private
exponent satisfies

δ ≤ 1
3r

(
4r − 1 − 2

√
(r − 1)(r − 1 + 3αr)

)
− ε,

then the modulus can be (probabilistically) factored in time polynomial in n,
provided that Assumptions 2.15 and 2.14 hold.

The generalization of Blömer and May’s lattice based attack, as generalized
for arbitrary public exponents in Attack 5.6, is given in the following attack.
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Attack 9.4. For every ε > 0 and integer r ≥ 2 there exists an n0 such that,
for every n > n0, the following holds: Let N be an n-bit r-prime RSA modulus
with balanced primes, let e Nα be a valid public exponent and let d = N δ be
its corresponding private exponent. Given the public key (N, e), if the private
exponent satisfies

δ ≤ 1
5r

(
6 − r − 3αr + 2

√
α2r2 − αr(r − 1) + 4(r − 1)2

)
− ε,

then the modulus can be (probabilistically) factored in time polynomial in n,
provided that Assumptions 2.15 and 2.14 hold.

When the public exponent is full sized, which is the typical case, the bound
becomes

δ ≤ 1
5r

(
6 − 4r + 2

√
4r2 − 7r + 4

)
− ε.

The generalization of Boneh and Durfee’s sub-lattice attack, for arbitrary
public exponents as given in Attack 5.4, is given in the following attack.

Attack 9.5. For every ε > 0 and integer r ≥ 2 there exists an n0 such that
for every n > n0 the following holds: Let N be an n-bit r-prime RSA modulus
with balanced primes, let e = Nα be a valid public exponent and d = N δ be its
corresponding private key. Given the public key (N, e), the private exponent
satisfies

δ <
r −√αr(r − 1)

r
− ε,

then the modulus can be (probabilistically) factored in time polynomial in n,
provided that Assumptions 2.15 and 2.14 hold.

When the public exponent is full sized (α ≈ 1), which is the expected case,
the bound in the attack becomes

δ ≤ r −√r(r − 1)
r

− ε.

Details of the justification for this bound (Attack 9.5 with α ≈ 1) are given
by Ciet, Koeune, Laguillaumie and Quisquater [44, §4.2.1].

In Table 9.3, we compare the bounds for all of the attacks when the pub-
lic exponent is full sized and the modulus is sufficiently large. As the data
illustrates, each of the attacks become less effective with increasing number
of primes.

9.4 Partial Key Exposure Attacks

In this section we collect all the known partial key exposure attacks on
multi-prime RSA, with the exception of two attacks that will given later in



164 Cryptanalysis of RSA and Its Variants

TABLE 9.3: Small private exponent bounds
for multi-prime RSA

r = 2 r = 3 r = 4 r = 5
Theorem 9.2 0.2500 0.1667 0.1250 0.1000
Attack 9.3 0.2847 0.1799 0.1320 0.1043
Attack 9.4 0.2899 0.1812 0.1325 0.1045
Attack 9.5 0.2929 0.1835 0.1340 0.1056

Section 9.6. All of the attacks in the section are extensions of attacks on RSA
from Chapter 6. However, not all of the partial key exposure attacks on RSA
can be extended to multi-prime RSA. As in Chapter 6, we use x̂ to denote the
most significant bits of x and x̃ to denote the least significant bits if x (in the
relaxed sense).

9.4.1 Partial Private Exponent: MSBs

In this section we assume that the adversary knows some number of the
most significant bits of the private exponent d = Nβ . That is, for a given
public key (e, N), we assume that the adversary knows d̂ such that

|d − d̂| < N δ,

for some 0 ≤ δ ≤ β. The attacks are extensions of the partial key exposure
attacks from Section 6.2.

The best known attacks, when one of the public or private exponents is full
sized, are illustrated in Figure 9.1 for the first few values of r, including the
attacks on RSA (r = 2). Just as with the small private exponent attacks, it is
clear that the attacks become weaker when increasing the number of primes
in the modulus.

9.4.1.1 Arbitrary Exponents

Both of the arbitrary exponent attacks from Section 6.2.1, which them-
selves are simple generalizations of the results of Ernst, Jochemsz, May and
de Weger [75], can be easily extended to multi-prime RSA.

Attack 6.2 can be restated for multi-prime RSA as the following.

Attack 9.6. For every ε > 0 and integer r ≥ 2 there exists an n0 such that
for every n > n0 the following holds: Let N be an n-bit r-prime RSA modulus
with balanced primes, let e = Nα be a valid public exponent and let d = Nβ

be its corresponding private key. Given the public key (N, e) and d̂ satisfying
|d − d̂| ≤ N δ, if

δ ≤ 2
3

+
1
3r

− 2
3r

√
(r − 1)(3αr + 3βr − 2r − 1) − ε (9.6)

then the modulus can be (probabilistically) factored in time polynomial in n,
provided that Assumptions 2.15 and 2.14 hold.
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FIGURE 9.1: Theoretical bounds for partial key exposure attacks with
known most significant bits.
(J. Math. Crypt. 2 (2008), 117–147. c© de Gruyter 2008. Used with permission.)

The justification of this attack follows from the justification of Attack 6.2,
using the bound |s| < (2r − 1)N1−1/r instead of |s| < 3N1/2. For details of
the justification see Hinek [107, Attack 5.1].

Attack 6.3 can be restated for multi-prime RSA as the following.

Attack 9.7. For every ε > 0 and integer r ≥ 2 there exists an n0 such that
for every n > n0 the following holds: Let N be an r-prime RSA modulus
with balanced primes, let e = Nα be a valid public exponent and let d = Nβ

be its corresponding private key. Given the public key (N, e) and d̂ satisfying
|d − d̂| ≤ N δ, if

1. α > 1 − δ, δ ≥ β − 1/r and

δ ≤ 3r2 + 6αr + 3 − r2α2 − 6r − 2αr2

4αr2
− ε, or

2. α > 1 + 1/r − β, δ ≤ β − 1/r and

δ ≤ α + β − 1
3

+
2
3r

− 2
3r

√
(αr + βr − r − 1)(αr + βr + 2r − 4) − ε,

then the modulus can be (probabilistically) factored in time polynomial in n,
provided that Assumptions 2.15 and 2.14 hold.

This attack, like Attack 6.3, uses knowledge of the most significant bits
of the private exponent to compute some of the most significant bits of the
constant k (from the key equation). In particular, using the notation from the
attack statement, the value k̂ given by

k̂ =

⌈
ed̂ − 1

N

⌋
=

ed̂ − 1
N

+ ε, (9.7)
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for some |ε| ≤ 1/2, reveals some of the most significant bits of k. It was shown
(see inequality (6.3)) that, in general,

∣∣∣k − k̂
∣∣∣ <
∣∣∣∣∣e(d − d̂)

φ(N)

∣∣∣∣∣+
∣∣∣∣∣ sed̂

Nφ(N)

∣∣∣∣∣+ 1
2
, (9.8)

and since e < φ(N) and d̂ < N , it follows that k̂ always satisfies

∣∣∣k − k̂
∣∣∣ <
∣∣∣∣∣e(d − d̂)

φ(N)

∣∣∣∣∣+
∣∣∣∣∣ sed̂

Nφ(N)

∣∣∣∣∣+ 1
2

< Nδ + (2r − 1)N1−1/r +
1
2
, (9.9)

where, just in the case for RSA (r = 2), better bounds can be obtained depend-
ing on the actual parameters (α and β). The remainder of the justification of
this attack follows from the justification of Attack 6.3, again using the bound
|s| < (2r − 1)N1−1/r instead of |s| < 3N1/2. For details of the justification,
see Hinek [107, Attack 5.2].

9.4.1.2 Full Sized Public Exponent

When the public exponent is full sized the best known partial key exposure
attacks (with known most significant of the private exponent) are the small
private exponent attacks from Section 9.3 (which require no bits of the private
exponent) and the arbitrary exponent attacks presented above. The strength
of these attacks for the first few values of r are illustrated in Figure 9.1(a).

Letting α ≈ 1 in the arbitrary exponent attacks, Attacks 9.6 and 9.7, we
immediately obtain the following attacks for full sized public exponents.

Attack 9.8. For every ε > 0 and integer r ≥ 2 there exists an n0 such
that for every n > n0 the following holds: Let N be an n-bit r-prime RSA
modulus with balanced primes, let e be a valid public exponent and let d = Nβ

be its corresponding private key. Given the public key (N, e) and d̂ satisfying
|d − d̂| ≤ N δ, if

δ ≤ 2
3

+
1
3r

− 2
3r

√
(r − 1)(3βr + r − 1) − ε

then the modulus can be (probabilistically) factored in time polynomial in n,
provided that Assumptions 2.15 and 2.14 hold.

Attack 9.9. For every ε > 0 and integer r ≥ 2 there exists an n0 such that
for every n > n0 the following holds: Let N be an r-prime RSA modulus
with balanced primes, let e be a valid public exponent and let d = Nβ be
its corresponding private key. Given the public key (N, e) and d̂ satisfying
|d − d̂| ≤ Nδ, if

1. δ ≥ β − 1/r and

δ ≤ 3
4r2

− ε, or
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2. δ ≤ β − 1/r and

δ ≤ β

3
+

2
3r

− 2
3r

√
(βr − 1)(βr + 3r − 4) − ε,

then the modulus can be (probabilistically) factored in time polynomial in n,
provided that Assumptions 2.15 and 2.14 hold.

9.4.1.3 Full Sized Private Exponent

There are two main attacks when the private exponent is full sized and
some of its most significant bits are known. The strength of these attacks are
illustrated in Figure 9.1(b) for the first few values of r.

The first attack applies to instances of multi-prime RSA when the pub-
lic exponent is smaller than N1/r and is a generalization of attack on RSA
by Boneh, Durfee and Frankel [31], which we have restated in Theorem 6.7.
The attack, which was extended to multi-prime RSA by Hinek, Low and
Teske [109], can be stated in the following theorem.

Theorem 9.10. Let N be an r-prime RSA modulus with balanced primes,
let e = Nα be a valid public exponent for any 0 < α ≤ 1/r, and let d be its
corresponding private exponent. Let k be the constant in the key equation and
let e = γk for some γ > 1. Given the 1−α most significant bits of the private
exponent the modulus can be (probabilistically) factored in time polynomial in
r, log(N) and γ.

The proof of this result follows the proofs of Lemma 6.6 and Theorem 6.7,
letting |s| < (2r−1)N1−1/r instead of |s| < 3N1/2. The actual attack remains
the same, only the bounds change. By extending Lemma 6.6 to multi-prime
RSA, it can be shown that the α most significant bits of the private exponent
reveals the constant k in the key equation up to an additive error of 3+2(2r−
1). We can mount the attack with every k′ in this range until k′ = k. The
least significant bits of the private exponent (modulo k) can be computed once
the correct value of k is known and this can be used with the known most
significant bits to recover the entire private exponent. Once d and k are both
known, the modulus can be (probabilistically) factored since (ed−1)/k = φ(N)
is known. More detail can be found in [109, Theorems 6 and 7], which is a
more direct generalization of Boneh, Durfee and Frankel’s original method (in
[31]).

The second attack, which applies to instances of multi-prime RSA with
public exponents greater than N1/r, is the second case of the second arbitrary
exponent attack from above. In particular, letting β ≈ 1 in Attack 9.7, leads
to the following attack.

Attack 9.11. For every ε > 0 and integer r ≥ 2 there exists an n0 such
that for every n > n0 the following holds: Let N be an r-prime RSA modulus
with balanced primes, let e = Nα be a valid public exponent and let d be
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its corresponding private key. Given the public key (N, e) and d̂ satisfying
|d − d̂| ≤ Nδ, if α > 1/r and

δ ≤ α

3
+

2
3r

− 2
3r

√
(rα − 1)(rα + 3r − 4) − ε,

then the modulus can be (probabilistically) factored in time polynomial in n,
provided that Assumptions 2.15 and 2.14 hold.

The other arbitrary exponent attacks lead to weaker attacks when the
private exponent is full sized.

There are two partial key exposure attacks on RSA with known most
significant bits of the private exponent, from Section 6.2.3, that have not been
extended to multi-prime RSA (see Figure 9.1(b)). In particular, Theorems 6.8
and 6.9 have not been extended to multi-prime RSA. These attacks (for RSA)
are possible because the modulus (and φ(N)) have only two unknowns. When
there are more than two primes in the modulus these attacks are not possible.
More detail of why Theorem 6.9 cannot be extended is given in [109, §5.2].

9.4.1.4 Effectiveness in Practice

The practical effectiveness of the partial key exposure attacks, when one
of the exponents is full sized, is illustrated in Figure 9.2. The results are for
the first few values of r and commonly used modulus sizes.

In Figure 9.2(a) the partial key exposure attacks with full sized public
exponent are shown. Each experiment for r = 2, 3 used a random 1024-bit
modulus and each experiment for r = 4 used a random 2048-bit modulus.
The attacks were mounted with a lattice with dimension dim(L) = 20, which
is one of the smallest lattice sizes allowed by the attacks. The data shows
minimum fraction of bits needed to successfully recover the private exponent
(we did not proceed to factor the modulus) for each size of private exponent.
Already with this small lattice dimension, as can be seen by the data, the
attacks are fairly successful compared to the theoretical bound (lower line in
the plots). With this size of lattice dimension and moduli, the attacks were
very efficient, taking at most several minutes.

In Figure 9.2(b), the partial key exposure attacks with full sized private
exponent are shown. The attack from Theorem 9.10 works extremely well in
practice and is very efficient. For the lattice-based attack in Attack 9.11, each
experiment for r = 2, 3 used a random 1024-bit modulus and a lattice with
dimension dim(L) = 20, while each experiment for r = 4 used a random 256-
bit modulus and a lattice with dimension dim(L) = 32. The attack for r = 2, 3,
as seen in the plots, works quite well. The bounds achieved compare well to
the theoretical bounds even for this small lattice dimension. When r = 4,
however, the attack was not successful at all using a lattice with dimension
20. The lattice dimension needed to be larger to obtain any useful data.
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FIGURE 9.2: Effectiveness of partial key exposure attacks with known most
significant bits.
(J. Math. Crypt. 2 (2008), 117–147. c© de Gruyter 2008. Used with permission.)

9.4.2 Partial Private Exponent: LSBs

In this section we consider attacks in which some of the least significant
bits of the private exponent are known. Again, we use a relaxed notion for
what least significant bits means. In particular, we assume that an adversary
knows d̃ and some M such that d̃ = d mod M . Thus, the private exponent
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can be written as d = d0M + d̃ where d0 is the only unknown. Letting d = Nβ

and M = Nβ−δ, the unknown d0 satisfies

|d0| =

∣∣∣∣∣d − d̃

M

∣∣∣∣∣ <
∣∣∣∣ d

M

∣∣∣∣ < N δ,

and so δ is the size of the unknown part of the private exponent. The best
known attacks, when one of the public or private exponents is full sized, are
shown in Figure 9.4.2.
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FIGURE 9.3: Theoretical bounds for partial key exposure attacks with
known least significant bits.
(J. Math. Crypt. 2 (2008), 117–147. c© de Gruyter 2008. Used with permission.)

9.4.2.1 Arbitrary Exponents

There is one general partial key exposure attack on multi-prime RSA with
least significant bits of the private exponent known. The result is a general-
ization of Attack 6.12, which is a simple generalization of the original result
by Ernst, Jochemsz, May and de Weger [75], and is stated in the following
attack.

Attack 9.12. For every ε > 0 there exists an n0 such that for every n > n0 the
following holds: Let n be an n-bit r-prime RSA modulus with balanced primes,
let e = Nα be a valid public exponent and let d = Nβ be its corresponding
private exponent. Let M = Nβ−δ for some 0 ≤ δ ≤ β. Given the public key
(e, N), M and d̃ = d mod M , if

δ ≤ 2
3

+
1
3r

− 2
3r

√
(r − 1) (3rβ + 3rα − 2r − 1) − ε,

then the modulus can be factored in time polynomial in n, provided that As-
sumptions 2.15 and 2.14 hold.
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The justification of this attack follows from the justification of Attack 6.12.
For more details see Hinek [107, Attack 4.1].

9.4.2.2 Full Sized Public Exponent

When the public exponent is full sized the best known partial key exposure
attacks, with known least significant of the private exponent, are the small
private exponent attacks from Section 9.3 (which require no bits of the private
exponent) and the arbitrary exponent attack from above. The strength of these
attacks, for the first few values of r, are illustrated in Figure 9.4.2(a).

Letting α ≈ 1 in Attack 9.12 yields the following attack.

Attack 9.13. For every ε > 0 there exists an n0 such that for every n > n0

the following holds: Let n be an n-bit r-prime RSA modulus with balanced
primes, let e be a valid public exponent and let d = Nβ be its corresponding
private exponent. Let M = Nβ−δ for some 0 ≤ δ ≤ β. Given the public key
(e, N), M and d̃ = d mod M , if

δ ≤ 2
3

+
1
3r

− 2
3r

√
(r − 1) (3rβ + r − 1) − ε,

then the modulus can be factored in time polynomial in n, provided that As-
sumptions 2.15 and 2.14 hold.

9.4.2.3 Full Sized Private Exponent

When the private exponent is full sized the best known partial key ex-
posure attacks on multi-prime RSA, with known least significant bits of the
private exponent, is the arbitrary exponent attack from above. The attack is
immediately obtained by letting β ≈ 1 in Attack 9.12, as given in the attack
below. The strength of this attack, for the first few values of r, is illustrated
in Figure 9.4.2(b).

Attack 9.14. For every ε > 0 there exists an n0 such that for every n > n0

the following holds: Let n be an n-bit r-prime RSA modulus with balanced
primes, let e = Nα be a valid public exponent and let d be its corresponding
private exponent. Let M = N1−δ for some 0 ≤ δ ≤ 1. Given the public key
(e, N), M and d̃ = d mod M , if

δ ≤ 2
3

+
1
3r

− 2
3r

√
(r − 1) (3rα + r − 1) − ε,

then the modulus can be factored in time polynomial in n, provided that As-
sumptions 2.15 and 2.14 hold.

Letting r = 2 recovers the original result δ ≤ 5
6 − 1

3

√
1 + 6α, obtained by

Blömer and May [21, Theorem 11], and again by Ernst et al. [75, §4.3].
Boneh, Durfee and Frankel’s small public exponent partial key exposure

attack on RSA [31, Theorem 3.1], Attack 6.14, is unlikely to succeed when
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there are three or more primes in the modulus. See [109, §5.1] for more dis-
cussion of why this attack most likely cannot be extended to multi-prime
RSA.

9.4.2.4 Effectiveness in Practice

The practical effectiveness of the partial key exposure attacks, when one
of the exponents is full sized, is illustrated in Figure 9.4. The results are for
the first few values of r and commonly used modulus sizes.

The data shows experimental bounds for Attacks 9.13 and 9.14 using a
small lattice. Each experiment for r = 2, 3 used a random 1024-bit modulus
and each experiment for r = 4 used a random 2048-bit modulus. The attacks
were mounted with a lattice with dimension dim(L) = 16, for all experiments,
which is one of the smallest lattice sizes allowed by the attacks. The data
shows the minimum fraction of bits needed to successfully recover the private
exponent (again, we did not proceed to factor the modulus) for each size of
the private or public exponent. Already with this small lattice dimension, as
can be seen by the data, the attacks are fairly successful compared to the
theoretical bound (lower line in the plots).

9.4.3 Known Primes

We now consider attacks in which one or more of the primes in the modulus
is known. Let N = p1 · · · pr be a multi-prime RSA modulus with balanced
primes and suppose that υ ∈ [1, . . . , r − 2] of the primes are known. Letting
P be the product of the known primes and Q = N/P be the product of the
unknown primes, notice that since all the primes are distinct, φ(N) satisfies

φ(N) = φ(PQ) = φ(P )φ(Q) = φ(P )(Q − sQ), (9.10)

where |sQ| = |Q− φ(Q)| < cN1−υ/r−1/r for some constant c that depends on
r and υ but not on N . Using equation (9.10) in the key equation leads to new
attacks on multi-prime RSA.

9.4.3.1 Small Private Exponent Attack

When one or more of the primes of the modulus are known and the pri-
vate exponent is sufficiently small, the following simple result, by Hinek [107,
Attack 6.1], can be used to factor the modulus.

Theorem 9.15. For every ε > 0 and r ≥ 3 there exists an n0 such that for
every n > n0 the following holds: Let N be an n-bit r-prime RSA modulus
with balanced primes, let e be a valid public exponent and let d = N δ be its
corresponding private exponent. Given the public key and any 1 ≤ υ ≤ r − 2
of the primes in the factorization of N , if

δ <
υ

r
− ε,
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FIGURE 9.4: Practical effectiveness of partial key exposure attacks with
known least significant bits.
(J. Math. Crypt. 2 (2008), 117–147. c© de Gruyter 2008. Used with permission.)

then the modulus can be (probabilistically) factored in time polynomial in n.

Proof: Letting P be the product of the υ known primes and Q = N/P , we
begin by writing the key equation as

ed = 1 + kφ(Q)φ(P ),
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which, when reduced modulo φ(P ) yields the equation d ≡ e−1 (mod φ(P )).
Therefore, whenever d < φ(P ), it follows that d = e−1 mod φ(P ), and hence
the private exponent is revealed. Since the primes are balanced, φ(P ) satisfies

φ(P ) >
1
2

P >
1
2

1
2υ

Nυ/r,

and so a sufficient condition for d < φ(P ) is given by d = Nδ < 2−1−υNυ/r,
or simply

δ <
υ

r
− (υ + 1)logN (2) =

υ

r
− ε, (9.11)

where ε > 0 can be made arbitrarily small by considering sufficiently large N .
With d known we can then compute a multiple of φ(Q) and (probabilistically)
factor Q with Miller’s results [173] to obtain the full factorization of N . Since
all computations can be done in time polynomial in n, the result follows. �

The bound on the private exponents in this attack is much larger than any
of the small private exponent attacks on multi-prime RSA (with three or more
primes in the modulus). Even with only one known prime, private exponents
up to N1/r are insecure.

9.4.3.2 Partially Known Private Exponent Attack

When some of the most significant bits of the private exponent are known,
in addition to one or more of the primes in the modulus, the following attack
by Hinek [107, Attack 6.2] can be used to factor the modulus. The attack is a
generalization of Attack 6.2 (and Attack 9.6), which itself is a generalization
of the partial key exposure attacks by Ernst et al. [75, Theorems 1 and 2].

Attack 9.16. For every ε > 0 and r ≥ 3 there exists an n0 such that for
every n > n0 the following holds: Let N be an n-bit r-prime RSA modulus
with balanced primes, let e = Nα be a valid public exponent and let d = Nβ be
its corresponding private exponent. Given (N, e), 1 ≤ υ ≤ r − 2 of the primes
in the factorization of N , and d̂ such that |d− d̂| ≤ Nδ for some 0 ≤ δ ≤ β, if

δ ≤ 2
3

+
υ + 1
3r

− 2
3r

√
(r − υ − 1) (3rα + 3rβ − 2r − υ − 1) − ε

then the modulus can be (probabilistically) factored in time polynomial in n,
provided that Assumptions 2.15 and 2.14 hold.

Proof: Let P be the product of the known υ primes and Q = N/P . Starting
with the key equation ed = 1 + kφ(P )φ(Q), we can replace the private key d

with d2 + d1φ(P )+ d0 where d0 = e−1 mod φ(P ) and d2 = d̂− (d̂ mod φ(P )
)
.

This ensures that d ≡ d0 (mod φ(P )). We can also replace φ(Q) with Q− sQ,
where

sQ < (r − υ)2r−υ−1N1− υ
r − 1

r ,
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since the primes are balanced. We thus have

e(d2 + d1φ(P ) + d0) = 1 + kφ(P )(Q − sQ),

where d1, k and sQ are the only unknowns. Replacing each unknown with a
variable leads to the following polynomial

f(x, y, z) = ex − φ(P )Q y + φ(P ) yz + d2φ(P ) + d0 − 1 ∈ Z[x, y, z],

which by construction has the integer root (x0, y0, z0) = (d1, k, sQ). Let X, Y
and Z be bounds for |x0|, |y0| and |z0|, respectively, defined by

|x0| = |d1| =
∣∣∣∣d − d2 − d0

φ(P )

∣∣∣∣ < 2υ+1N δ−υ/r = X

|y0| = |k| =
∣∣∣∣ed − 1
φ(N)

∣∣∣∣ < 2Nα+β−1 = Y

|z0| = |sQ| < (r − υ)2r−υ−1N1− υ
r − 1

r = Z,

and let W = ‖f(xX, yY, zX)‖∞ = 2Nα+β . From Theorem 2.13 it follows that
two linearly independent polynomials, that are each algebraically indepen-
dent with f(x, y, z), with root (x0, y0, z0) = (d1, k, sQ) can be found in time
polynomial in n, provided that N is sufficiently large and that

X1+3τY 2+3τZ1+3τ+3τ2 ≤ W 1+3τ ,

for any τ ≥ 0. Substituting the values for X,Y, Z and W , this inequality is
equivalent to

(r − υ − 1) τ2 + (δr − 2υ − 1) τ + 1
3 (δr + rβ − 2υ + rα − r − 1) ≤ 0,

where we have ignored all the constants that do not depend on N . The left-
hand side of this inequality is minimized, for any choice of α, δ, r and υ ≤ r−2
by letting, when τ = − 1

2 (δr − 2υ − 1)/(r − υ − 1). Using this value for τ and
solving for δ, we find that

δ ≤ 2
3

+
υ + 1
3r

− 2
3r

√
(r − υ − 1) (3rα + 3rβ − 2r − υ − 1) − ε, (9.12)

where ε > 0 has been added to account for the ignored constants and lower
order terms (implicit in Theorem 2.13). Thus, when (x0, y0, z0) = (d1, k, sQ)
is the only solution (Assumption 2.14) and when the polynomials found from
Theorem 2.13 are algebraically independent (Assumption 2.15), it follows that
when the private exponent satisfies (9.12), the value z0 = sQ can be found
which allows us to (probabilistically) factor Q (and hence N) using Miller’s
results [173]. Since all of the computations can be done in time polynomial in
n, the result follows. �
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9.4.4 Partial Primes

When some of the bits of the primes are known it is possible to enhance the
small private exponent attacks and the partial key exposure attacks discussed
above, just as the attacks on RSA can be improved (recall Section 6.4). In
any of the attacks that use s = N − φ(N), the attacks can be strengthened
when some number of the most or least significant bits of s are known, or are
guessed.

9.5 Common Modulus Attacks

There are two common modulus attacks on RSA that can be easily ex-
tended to multi-prime RSA. These extensions have been shown by Hinek and
Lam [108], and are each discussed below.

9.5.1 Howgrave-Graham and Seifert’s Attack

When there are two instances of multi-prime RSA with a common mod-
ulus, a simple extension of Howgrave-Graham and Seifert’s attack [114], de-
scribed in Section 7.1, can be used to factor the modulus if both private
exponents are sufficiently small. Their result can be stated for multi-prime
RSA in the following attack.

Attack 9.17. For every ε > 0 there exists n0 such that for all n > n0 the fol-
lowing holds: Let N = p1 · · · pr be an n-bit r-prime RSA modulus with balanced
primes, let (e1, N) and (e2, N) be valid public keys (with different public expo-
nents), and let d1, d2 < N δ, be their corresponding private exponents. Given
the two public keys, if

δ < min
{

3 + r

7r
,
1
r

}
− ε,

then the modulus can be (probabilistically) factored in time polynomial in n,
provided that Assumption 2.6 holds.

Justification: Using the notation developed in Section 7.1 (from [114]), we
begin by writing the equations k2W1, G1,2 and W1W2, given by

k2W1 : k2d1e1 − k2k1N = k2(1 − k1s)
G1,2 : k1d2e2 − k2d1e1 = (k1 − k2)

W1W2 : d1d2e1e2 − d1k2e1N − d2k1e2N + k1k2N
2 = (1 − k1s)(1 − k2s),
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along with the trivial equation k1k2 = k1k2 as a vector-matrix equation xB =
v, where

x = (k1k2, k2d1, k1d2, d1d2)

B =

⎡
⎢⎢⎣

1 −N 0 N2

e1 −e1 −e1N
e2 −e2N

e1e2

⎤
⎥⎥⎦

v = (k1k2, k2(1 − k1s), (k1 − k2), (1 − k1s)(1 − k2s)).

The vector v is an integer linear combination of the rows in B, and is therefore
a vector in the lattice L2 generated by the rows of B. The size of v, com-
ing from the dominant last component, is roughly k1k2s

2 ≈ N2δ+2(1−1/r =
N2(δ+1−1/r). Since the components of v are not the same size, we consider the
modified vector-matrix equation xBD = vD, where D is the diagonal matrix

D =

⎡
⎢⎢⎣

N2(1−1/r) 0 0 0
0 N (1−1/r) 0 0
0 0 N δ+2(1−1/r) 0
0 0 0 1

⎤
⎥⎥⎦ ,

which we denote as D = diag(N2(1−1/r), N1−1/r, Nδ+2(1−1/r), 1). Letting B′ =
BD and v′ = vD, it follows that the new target vector v′, which is a vector
in the lattice L′ generated by the rows in B′, has balanced components and
norm ‖v′‖ ≈ N2(δ+1−1/r) and that the new lattice L′ has volume

vol(L′) = | det(B′)| = | det(B) det(D)| = e2
1e

2
2N

δ+5(1−1/r) ≈ N δ+9−5/r,

where we have ignored all of the small constants that do not depend on N and
we have used the approximation e1, e2 ≈ N . Since dim(L′) = 4, it follows from
Theorem 2.3 (Minkowski), that a necessary condition for v′ to be a shortest
vector in L′ is given by ‖v′‖ < 2vol(L′)1/4. Using the values for ‖v′‖ and
vol(L′) from above, and ignoring small constants, this is satisfied when

N2(δ+1−1/r) < N (δ+9−5/r)/4,

or more simply, solving for δ in the exponents, when δ satisfies

δ <
1
7

+
3
7r

− ε =
3 + r

7r
− ε,

where ε > 0 has been added to account for any constants that were ignored.
This correction term can be made arbitrarily small by considering sufficiently
large N . Thus, both private exponents must be smaller than N1/7+3/7r−ε in
order for the target vector v′ to be a smallest vector in L′.

Examining the basis matrix B′ = BD in more detail, notice that the last
row in the basis matrix, given by (0, 0, 0, e1e2), is the smallest basis vector in



178 Cryptanalysis of RSA and Its Variants

B′. Therefore, another necessary condition for v′ to be a smallest vector in L′

is that ‖v′‖ ≤ ‖(0, 0, 0, e1e2)‖ ≈ N2. Since ‖v′‖ ≈ N2(δ+1−1/r), it follows that
a second necessary condition is given by δ ≤ 1/r.

When Assumption 2.6 holds for the lattice L′, it follows that when both
private exponents satisfy the two necessary conditions

δ < min
{

3 + r

7r
,
1
r

}
,

the target vector v′ can be found by computing an LLL-reduced ba-
sis for the lattice. Once v′ is known, we can solve xB′ = v′ for x =
(k1k2, k2d1, k1d2, d1d2). The first two components of x allows us to compute
d1/k1, which can be used to compute φ(N) since

φ(N) =
e1d1 − 1

k1
= e1

d1

k1
− 1

k1
=
⌊
e1

d1

k1

⌋
.

Once φ(N) is known, we can (probabilistically) factor the modulus using
Miller’s results [173]. Since all computations can be done in time polyno-
mial in n, the result follows. �

9.5.1.1 Practical Effectiveness

While Howgrave-Graham and Seifert’s attack works quite well for RSA
(recall Tables 7.1 and 7.2 from Section 7.1), its extension to multi-prime RSA
is slightly less effective in practice. This is illustrated in Table 9.4 (taken from
[108, Table 7]). The data shows the number of times the attack was mounted
successfully, out of 100 trials, for r = 3 (with 1024-bit N) and r = 4 (with
2048-bit N). As can be seen from the data, the attack is quite successful
for small private exponents, but becomes ineffective well before the bounds
in Attack 9.17 suggest (in contrast to RSA which is successful right up to
the bound). Nevertheless, the attack can still efficiently break instances of
multi-prime RSA with private exponents much larger than the small private
exponent attacks can hope to achieve.

9.5.2 Guo’s Attack

The second common modulus attack, described by Howgrave-Graham and
Seifert [114], is an unpublished attack by Guo [93], on common modulus RSA
with small private exponents. While the attack is stated for RSA it trivially
applies to most variants of RSA. We restate Guo’s result, as applied to multi-
prime RSA, in the following theorem.

Theorem 9.18. Let N be an r-prime RSA modulus, let e1, e2, e3 ≥ Nα be
valid (distinct) public exponents, and let d1, d2, d3 < N δ be their corresponding
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TABLE 9.4: Howgrave-Graham and
Seifert’s common modulus attack in
practice

δ3 Success δ4 Success
0.242 100 0.180 100
0.243 100 0.181 100
0.244 100 0.182 100
0.245 100 0.183 100
0.246 100 0.184 100
0.247 88 0.185 100
0.248 52 0.186 77
0.249 4 0.187 2
0.250 0 0.188 0

private exponents. Given the three public keys, if the private exponents satisfy

δ <
α

3
− logN (2),

then the modulus can be (probabilistically) factored in time polynomial in
log(N) with non-negligible probability.

We give an outline of the proof of the attack in a general RSA setting
instead of restricting the discussion to multi-prime RSA. For more detail of
Guo’s attack, see Hinek and Lam [108].

Consider two instances of RSA (or a variant of RSA) with a common
modulus N with key equations

e1d1 = 1 + k1ϕ(N)
e2d2 = 1 + k2ϕ(N),

where ϕ(N) is some function of the primes in N . For example, ϕ(N) = λ(N)
for RSA or ϕ(N) = φ(N) for multi-prime RSA. Guo’s main observation is
that these equations can be combined to remove ϕ(N). Multiplying the first
equation by k2, the second equation by k1, and taking their difference yields

k2e1d1 − k1e2d2 = k2 − k1, (9.13)

where all the unknowns are relatively small (when the private exponent is
small). This equation is the starting point for Guo’s attack and the motivation
for labeling this equation as Gi,j in Howgrave-Graham and Seifert’s common
modulus attack. Since the equation is independent of ϕ(N), the attack holds
for most variants of RSA. With this equation as a starting point, the attack
then proceeds in a similar way as Wiener’s continued fraction attack. Notice
that dividing both sides of this equation by e2k2d1 yields

e1

e2
− k1d2

k2d1
=

k2 − k1

e2k2d1
, (9.14)
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which, combined with Theorem 2.2 suggests that k1d2/k2d1, in lowest terms,
can be obtained from the continued fraction expansion of e1/e2 when the right-
hand side (k2−k1)/(e2k2d1) is small enough. In fact, a sufficient condition for
Theorem 2.2 to apply is given by∣∣∣∣ k2 − k1

e2k2kd1

∣∣∣∣ < 1
2(k2d1)2

, (9.15)

or more simply

d1 <
e2

2k2 |k2 − k1| . (9.16)

Let e1, e2 ≥ Nα and d1, d2 ≤ N δ. Since we are interested in instances with
small private exponents, we will assume that the public exponents are full
sized and so k1, k2 ≤ N δ. It should be noted however, that the actual size of a
full sized public exponent depends on ϕ(N) and is not necessarily equivalent
to α ≈ 1. Using these, the bound can be further simplified to

δ <
α

3
− logN (2),

as given by Theorem 9.18.
The attack proceeds by computing the continued fraction expansion of

e1/e2, e2/e3 and e3/e1 and looking for the convergents k1d2/k2d1, k2d3/k3d2

and k3d1/k1d3, respectively. If all of the ki and di are pairwise relatively prime,
it follows that we can compute

gcd(k1d2, k3d2) = d2,

using the numerator of k1d2/k2d1 and denominator of k2d3/k3d2. In a similar
way any of the ki or di can be computed. With one of the di known, a multiple
of ϕ(N) can be computed which allows the modulus to be (probabilistically)
factored using Miller’s results [173]. Since the attack only needs some informa-
tion from two of the convergents of the continued fraction expansions in order
to succeed, it is not necessary that all the ki and di be relatively prime. If any
of the combinations of computations (a gcd computation using the numerator
and denominator from different convergents) works, the attack succeeds. For
more detail see [108].

For multi-prime RSA, and RSA as well, a full sized public exponent satisfies
α ≈ 1, and so private exponents up to about N1/3 should be insecure when
three or more instances of multi-prime RSA share a common modulus. This
is a very interesting result, because it is independent of the number of primes
in the modulus.

9.5.2.1 Practical Effectiveness

Guo’s attack on multi-prime RSA works well in practice, as is illustrated in
Table 9.5. The data in the table, taken from [108, Table 3], shows the success
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rate averaged over 10, 000 trials for the r = 3 experiments and over 1, 000 for
r = 4. The attack is observed to work roughly 95% of the time for private
exponents approaching the δ < 1/3 bound.

TABLE 9.5: Guo’s common
modulus attack in practice

1024 2048 4096
δ r = 3 r = 3 r = 4

0.3000 0.9490 0.9464 0.9510
0.3100 0.9503 0.9470 0.9660
0.3200 0.9478 0.9481 0.9500
0.3300 0.9459 0.9524 0.9580
0.3310 0.9489 0.9485 0.9530
0.3320 0.9505 0.9469 0.9590
0.3330 0.8326 0.8282 0.7750
0.3333 0.5372 0.3614 0.1700
0.3333 0.5138 0.3182 0.1190
0.3340 0.1396 0.0230 0.0000
0.3350 0.0181 0.0001 –
0.3360 0.0025 0.0000 –
0.3370 0.0002 – –
0.3380 0.0000 – –

9.6 CRT Attacks

One of the main benefits of using multi-prime RSA is to reduce decryption
costs when using CRT decryption. There are currently very few known attacks
on multi-prime RSA with CRT decryption though.

9.6.1 Small CRT-Exponent Attack

There are no known polynomial time attacks on small CRT-exponent
multi-prime RSA. In fact, the only known attack mentioned in the litera-
ture, described by Hinek, Low and Teske [109, §4.3], is a simple generalization
of the O(d1/2

p log2(N)) attack on CRT-RSA (Attack 8.1) shown in Section 8.2.
We restate the result in the following attack.

Attack 9.19. Let N = p1 · · · pr be an r-prime RSA modulus with balanced
primes, let e be a valid public exponent,let d be its corresponding private expo-
nent and let di = d mod (pi−1) be the CRT-exponents, for i = 1, . . . , r. With-
out loss of generality, let d1 ≥ d2 ≥ · · · ≥ dr, and let m be the smallest integer
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such that d2 ≤ 2m. The modulus can be factored in time O(rd1/2
2 log2(N)),

provided that di �≡ dj (mod 2�m/2�) for all i �= j.

Like the factoring with a hint attack on multi-prime RSA, the attack
works by computing one prime factor at a time. Using the method described
in the justification of Attack 8.1, the prime corresponding to the smallest
CRT-exponent dr can be found in time O(d1/2

r log2(N)). Dividing the newly
found prime out of the modulus, we remount the attack with the new smaller
modulus to recover the prime corresponding to dr−1 in time O(d1/2

r−1 log2(N)),
and this is repeated until the prime corresponding to d2 is recovered in time
O(d1/2

2 log2(N)). Assuming all the CRT-exponents are chosen to be roughly
the same size, N δ say, the attack has complexity O(rNδ/2 log2(N)).

While the complexity is linear in the number of primes in the modulus,
this is an insignificant contribution, especially since the number of primes is
expected to be rather small. This is in contrast to most attacks on multi-
prime RSA which depend greatly on the number of primes in the modulus
(except Guo’s common modulus attack described earlier). The size of the
CRT-exponents chosen should be large enough so that the complexity of At-
tack 9.19 matches the complexity of factoring the modulus using the methods
in Section 9.2.

9.6.2 Partial CRT-Exponent Attack

Both of the partial CRT-exponent attacks from Chapter 8, by Blömer and
May [21], can be easily generalized to multi-prime RSA with CRT decryption.

Before stating the first attack we first give a generalization of Theorem 8.4,
which, given enough of the most significant bits of one of the CRT-exponents
can compute its corresponding prime. The result uses some of the most sig-
nificant bits of one of the CRT-exponents and works for public exponents up
to N1/r2

.

Theorem 9.20. Let N = p1 · · · pr be an r-prime RSA modulus with balanced
primes, let e be a valid public exponent of size e = Nα ≤ N1/r2

, and let
dp be any of the CRT-exponents. That is, edp ≡ 1 (mod p − 1) for prime
p ∈ {p1, . . . , pr}. Given d̂p such that

|dp − d̂p| ≤ N1/r2−α,

then the prime p can be computed in time polynomial in log(N).

The proof of this result follows directly from the proof of Theorem 8.4, by
changing the size of the primes from N1/2 to N1/r. Essentially, given enough
of the most significant bits of one of the CRT-exponents, a good enough ap-
proximation to a multiple of the prime (corresponding to that CRT-exponent)
can be constructed so that Corollary 2.9 can be used to compute the prime.
The modulus can be completely factored by repeatedly using Theorem 9.20,
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if the most significant bits are available for all but one of the CRT-exponents.
This immediately gives the following result.

Corollary 9.21. Let N = p1 · · · pr be an r-prime RSA modulus with balanced
primes, let e be a valid public exponent of size e = Nα ≤ N1/r2

, and let
dp1 , . . . , dpr

be the CRT-exponents. Given (1 − 1/r + rα) of the most signifi-
cant bits of r − 1 of the CRT-exponents, the modulus can be factored in time
polynomial in r and log(N).

When the CRT-exponents are full sized (dp, dq ≈ N1/r) the attack can be
used to factor the modulus when ((1 − 1/r + rα) of the most significant bits
of all but one of the CRT-exponents are given.

The second attack, which is a generalization of Theorem 8.5, can factor
the modulus when enough of the most or least significant bits of one of the
CRT-exponents are known, provided that the public exponent is very small.

Theorem 9.22. Let N = p1 · · · pr be an r-prime RSA modulus with bal-
anced primes, let e be a valid public exponent satisfying e � N1/r, and let
dp1 , . . . , dpr

be the CRT-exponents. Given (r − 1)/r of the most or least sig-
nificant bits of one of the CRT-exponents, (r − 1)/(r − 2) of the most or least
significant bits of another CRT-exponent, . . . , 2/3 of the most or least signif-
icant bits of another CRT-exponent, and 1/2 of the most or least significant
bits of one of the remaining two CRT-exponents, the modulus can be factored
in time polynomial in r, log(N) and e.

The proof follows from the proof of Theorem 8.5. Essentially, one prime
is obtained at a time, starting with the prime corresponding to the CRT-
exponent with (r − 1)/r known bits. Removing this prime from the modulus,
less bits of the next CRT-exponent are needed (since the value of β used
in Corollary 2.9 is increased). Just as with the factoring with a hint attack
(Theorem 9.1 when no primes are initially known), a total fraction of bits,
relative to the size of the modulus, is given by

1
r

(
r − 1

r
+

r − 2
r

+ · · · + 3
2

+
1
2

)
=

1
r

(r − Hr) = 1 − 1
r
Hr,

where Hn is the n-th harmonic number (Hn =
∑n

i=1 1/k).

As with Theorem 8.5, the size of the public exponent must be polynomial in
log(N) in order for the attack to have an overall complexity that is polynomial
log(N). This follows since the constant in the CRT-equation (which is bound
by the public exponent) needs to be guessed for each prime that is recovered.
Thus, the public exponents must be very small for this attack to be efficient.
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9.7 Additional Notes

The idea of using more than two primes in the modulus and decrypting
with the Chinese remainder theorem appears in the patent for RSA [205],
which was filed in 1977. Even though the idea of multi-prime RSA was al-
ready contained in the patent for RSA, a patent for multi-prime RSA was
granted in 1998 to Collins, Hopkins, Langford and Sabin [47]. In 2000, RSA
Security Inc. (now “RSA, The Security Division of EMC”) entered into an
agreement with Compaq Computer Corporation to use Compaq’s patented
MultiPrime technology [48] in their RSA BSAFE product line. (Compaq’s
patent is actually that of Collins et al.).

§9.2 The number of safe primes for a given modulus size can be computed
in more than one way, and depending on the assumptions used in the compu-
tations, can yield different results. For example, Lenstra [142] considers both
computational equivalence and cost equivalence when matching modulus sizes
(and number of primes) to symmetric key lengths. For computational equiv-
alence, the modulus length (and number of primes) is based on the expected
(heuristic) runtimes of the factoring algorithms (NFS and ECM) and the es-
timated complexity of recovering a symmetric key. The cost equivalence is
based on the matching the estimated costs for the hardware needed to mount
the attacks (with the same expected time). For example, the following table
shows the maximum number of safe primes from [48] along with those esti-
mated in [142], for both computational and cost equivalence (estimated for
the year 2010). As can be seen, there is some variation in the estimates, but
they only differ by at most one prime.

1024 2048 4096 8192
computational [48] 3 3 4 5
computational [142] 3 4 4 5
cost equivalence [142] 2 3 3 4

§9.2.1 The factoring with a hint result (Theorem 9.1) was originally shown,
independently, by Herrmann and May [100] and Hinek [106, 107]. Expressing
the total fraction of bits using harmonic numbers is from [100].

There is another factoring with a hint attack by Santoso, Kunihiro,
Kanayama and Ohta [209, 210]. For sufficiently large moduli, their attack
requires r/(r +2) of the most significant bits of each of the (balanced) primes
in the modulus. The result recovers Coppersmith’s bound for RSA but is
weaker than Theorem 9.1 when there are more primes in the modulus.

The result by Herrmann and May, given in [100], is stated in terms of
oracle calls that return a given bit of one of the primes. The proof assumes
that the most significant bits of the primes are returned by the oracle but
can be trivially modified to accommodate the least significant bits as well.
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In addition, their result, that 1 − Hr/r bits (in total) is needed to factor
the modulus applies to factoring arbitrary integers, not just the product of
balanced (distinct) primes as stated in Theorem 9.1.

The factoring with a hint attack presented here (Theorem 9.1) requires
some of the most or least significant bits of the primes to factor the modulus.
This can be generalized, using the results of Herrmann and May [101], to
arbitrary known bits. In particular, for sufficiently large moduli, given (r′ −
1) ln(r′/(r′−1)) of any of the bits of one of the r′ unknown primes allows that
prime to be computed. The fraction of bits needed to recover one (balanced)
prime when there are r′ (remaining) unknown primes is given in the following
table.

Number of primes
r′ = 2 r′ = 3 r′ = 4 r′ = 5
0.694 0.811 0.863 0.893

If the known bits come from O(log(log(N))) blocks then the prime can be
recovered in polynomial time. Otherwise, the time needed is exponential (in
the number of known blocks).

§9.3 Generalizing the small private exponent attacks on RSA to multi-prime
RSA was first considered, independently, by Hinek, Low and Teske [109] and
by Ciet, Koeune, Laguillaumie and Quisquater [44].

Hinek, Low and Teske [109] show generalizations of Wiener’s attack (The-
orem 5.1) with full sized public exponents, Boneh and Durfee’s lattice-based
attack (Attack 5.3) with arbitrary public exponent and Blömer and May’s
sub-lattice attack (Attack 5.6) with arbitrary public exponent.

Ciet et al. [44] show generalizations of Wiener’s attack (Theorem 5.1),
Boneh and Durfee’s lattice-based attack (Attack 5.3), and Boneh and Durfee’s
sub-lattice attack (Attack 5.4), all with full sized public exponents.

§9.4.3 Attack 9.16 is, ultimately, a generalization of Ernst et al.’s partial
key exposure attacks (from [75]). It is also an improvement over an earlier
result from [104, Theorem 2]. It turns out that, for this particular scenario,
computing the most significant bits of the constant k, from the key equation,
using the most significant bits of the private exponent, does not improve the
bounds of this attack.

§9.5 Howgrave-Graham and Seifert’s attack can also be mounted when there
are more than two instances of multi-prime RSA with a common modulus (as
with RSA). However, it turns out that Guo’s attack, in theory and practice,
is stronger as soon as there are three instances. See Hinek and Lam [108] for
more detail.





Chapter 10

Multi-Power RSA

In this chapter we consider variants of RSA that use a modulus of the form
N = pb−1q, for some b ≥ 3, which we will refer to as multi-power RSA.
The parameter b is the total number of primes, including multiplicities, in the
multi-power RSA modulus.

When the public and private exponents are defined modulo Euler’s phi
function φ(N), the variant is very similar to multi-prime RSA and most of the
attacks on multi-prime RSA apply directly to multi-power RSA. We consider
this variant briefly at the end of this chapter.

The focus of this chapter is on a variant of multi-power RSA, by Takagi,
in which the public and private exponents are defined modulo

λ′(N) = lcm(p − 1, q − 1),

instead of modulo φ(N) = pb−2(p− 1)(q − 1). Decryption in this variant uses
Hensel lifting and Chinese remaindering, and is the fastest decryption method
for all the variants we consider when a small public exponent is used.

10.1 Takagi’s Scheme

The main variant we consider, which we will call Takagi’s scheme, is
a variant of multi-power RSA by Takagi [241]. This variant uses a modulus
of the form N = pb−1q, for some b ≥ 3, and defines the public and private
exponents as inverses modulo λ′(N) = lcm(p − 1, q − 1). Since λ′(N) is not
a multiple of λ(N), standard decryption does not apply to this scheme. That
is, med �≡ m (mod N) in general. In order to decrypt a ciphertext, partial
decryptions modulo pb−1 and modulo q are computed and then combined by
Chinese remaindering. However, in order to compute the partial decryption
mpb−1 , additional work must be done. In particular, Hensel lifting is used.

For random balanced primes p and q, the modulus in Takagi’s scheme is
given by N = pb−1q, for some fixed b ≥ 3. A small public exponent e � N1/b is
chosen so that gcd(e, p) = 1 and the private exponent is defined as the inverse
of the public exponent modulo λ′(N) = lcm(p− 1, q − 1). That is, the private
exponent d is chosen so that ed ≡ 1 (mod λ′(N)). Once d is determined, the

187
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CRT-exponents

dp = d mod p − 1
dq = d mod q − 1,

are computed. The public key is (e, N) and the private key is (dp, dq, p, q, b).
Just as with CRT-RSA and multi-prime RSA, more information can be stored
in the private exponent to improve the efficiency of the decryption algorithm,
but this simplified private key is sufficient.

Encryption in Takagi’s scheme is the same as in RSA. Given a plaintext
m ∈ ZN , the ciphertext is simply c = md mod N . As mentioned above, stan-
dard decryption cannot be used here because λ′(N) = lcm(p− 1, q − 1) is not
a multiple of λ(N) = pb−2lcm(p − 1, q − 1). Decryption in Takagi’s scheme
consists of first computing the partial decryptions

mq = cdq mod q = m mod q

mp = cdp mod p = m mod p.

When N = pq, as in CRT-RSA, these can be combined via Chinese remain-
dering to recover the plaintext modulo N . In Takagi’s scheme, the partial
decryption mp needs to be first lifted to a partial decryption modulo pb−1.
Using b−2 iterations of Hensel lifting, the partial decryption modulo p can be
lifted to a partial modulo pb−1. The partial decryptions modulo q and modulo
pb−1 are then combined, with Chinese remaindering, to recover the plaintext
modulo N = pb−1q.

10.1.1 Efficiency of Takagi’s Scheme

Takagi’s scheme is more efficient than RSA in both its key generation and
decryption. For a given modulus size, notice that Takagi’s scheme only needs
to generate two random primes of size N1/b instead of two random primes of
size N1/2 as in RSA. Even if generating random primes was linear in the size of
the primes, this already decreases the key generation time for Takagi’s scheme.
Notice that the extra condition on the public exponent gcd(e, p) = 1, is of no
consequence when a small public exponent is chosen. In particular, using a
public exponent much smaller than N1/b will always ensure that gcd(e, p) = 1.
Thus, the complexity of generating an n-bit modulus for Takagi’s scheme is
equivalent to generating a (2n/b)-bit modulus for RSA.

In Algorithm 10.1, we show that the partial decryption modulo p can be
lifted to a partial decryption modulo pb−1. A full version of Takagi’s opti-
mized decryption algorithm can be found in [241, Algorithm 3]. Essentially,
the decryption algorithm computes the partial decryptions mp and mq, uses
Algorithm alg:takagi:decrypt to compute mpb−1 and then combines this with
mq with Garner’s algorithm to recover the plaintext.

Notice that the complexity of Algorithm 10.1 depends on the size of the
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Algorithm 10.1 Hensel lifting for Takagi’s scheme
Input: (c, e, dp, p, b)
1: m′

p = cdp−1 mod p

2: mp = cm′
p mod p = cdp mod p

3: for i from 1 to b − 2
4: x =

(
c − me

pi

)
mod pi+1

5: y = xm′
p(e

−1 mod p) mod pi+1

6: mpi+1 = mpi + y
Output: the partial decryption mpb−1

public exponent. In particular, a modular exponentiation with exponent e
needs to be done at step 4. However, using a small public exponent, such as
e = 216 + 1, will effectively remove this dependence. Also, if we assume that
p−1 mod q and e−1 mod p are pre-computed and given as additional input to
the algorithm, the entire complexity is dominated by the modular exponenti-
ation in step 1. Therefore, the complexity of the entire decryption algorithm
is dominated by the two modular exponentiations to compute the partial de-
cryptions mp and mq.

Since the public exponent is very small, it is expected with high probability
that the CRT-exponents will be full sized. That is, dp, dq ≈ N1/b. Following
the efficiency arguments for CRT-RSA in Chapter 8, it is then expected that
the cost for decryption in Takagi’s scheme is given by

2
3
2

n

b
M
(n

b

)
,

for an n-bit modulus. This leads to a speed-up in decryption time by a factor
of

b

2
M(n/2)
M(n/b)

,

over CRT-RSA using a small public exponent. Since the complexity of M(n)
can vary between almost linear and quadratic, it follows that this speed-up
lies somewhere in the range ((

b

2

)2

,

(
b

2

)3
]

.

In Table 10.1, we compare the decryption algorithms for CRT-RSA, multi-
prime RSA and Takagi’s scheme. The comparison is based on the total number
of modular exponentiations and the size of the modulus for the modular ex-
ponentiations, all for an n-bit modulus. Letting r = b, and assuming that
computations are done in serial, Takagi’s scheme is expected to be about r/2
times faster than multi-prime RSA. When computed in parallel, the dominant
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cost will be a single exponentiation modulo an n/b-bit integer and decryp-
tion costs will be roughly the same. However, due to the extra operations for
the Hensel lifting, Takagi’s decryption method should be slightly slower than
multi-prime RSA.

TABLE 10.1: Number of modular exponentiations
for decryption algorithms

number of modulus size for
exponentiations exponentiations

RSA 1 n
CRT-RSA 2 n/2

Multi-prime r n/r
Takagi 2 n/b

For a 1024-bit modulus, Takagi [241] implemented and compared decryp-
tion times for his scheme (with modulus N = p2q) and multi-prime RSA (with
modulus N = p1p2p3). For a serial implementation, it is expected that Tak-
agi’s scheme should be 3/2 = 1.5 times faster (for r = b = 3). In practice, it
was observed to be roughly 1.42 times faster.

This comparison of decryption times relies on Takagi’s scheme using a small
public exponent and the CRT-exponents for all the variants to be full sized.
The decryption times for both CRT-RSA and multi-prime RSA, however, are
significantly decreased when using small CRT-exponents. Using small CRT-
exponents in Takagi’s scheme results in a full sized public exponent e ≈ N2/b

and this increases the decryption costs (step 4 in Algorithm 10.1). Of course,
this minimization of decryption costs for CRT-RSA and multi-prime RSA
results in slower encryption times compared to Takagi’s scheme, since a full
sized public exponent for these schemes has size N .

10.1.2 Breaking Takagi’s Scheme

We will consider an instance of Takagi’s scheme to be broken when the
factorization of the modulus is known. For RSA, it was sufficient to recover
the private exponent or to compute φ(N) since there are deterministic poly-
nomial time algorithms that can factor the modulus given either of these.
For Takagi’s scheme, once a multiple of λ′(N) = lcm(p − 1, q − 1) is known,
the results of Miller [173] can be used to probabilistically factor the modulus.
Since ed−1 = kλ′(N), it is therefore sufficient to obtain the private exponent
in order to (probabilistically) factor the modulus. When the exponents are
defined modulo (p− 1)(q− 1), instead of modulo λ′(N), it has been shown by
Kunihiro and Kurosawa [136] that the modulus N = pb−1q can be factored in
deterministic polynomial time given the private exponent d.

Similar to CRT-RSA, knowledge of one of the CRT-exponents will also,
likely, allow the modulus to be factored. From the definition of the CRT-



Multi-Power RSA 191

exponents, it is expected that for a random plaintext message m ∈ Z∗
N ,

gcd(medp − m, N) = p

gcd(medq − m, N) = q,

and so knowledge of either dp or dq should yield the factorization of the mod-
ulus.

10.2 Factoring the Modulus

The security of Takagi’s scheme, like that of RSA and multi-prime RSA,
is based on the difficulty of factoring the modulus (even though computing
e-th roots may be easier). Here, the difficulty of factoring an n-bit modulus
for Takagi’s scheme should be no less difficult than factoring an n-bit RSA
modulus, in order to achieve the same security as the RSA modulus. Because
the difficulty of factoring a modulus N = pb−1q, for a fixed modulus size,
decreases with increasing b when using the ECM for factoring, the value of
b must be chosen with care. In particular, the total number of primes in the
modulus (counting multiplicities) must be small enough so that the expected
complexity of the ECM is not less than the expected complexity of the NFS.
Any number b that satisfies this condition is considered as a safe number
of primes for that modulus size, similar to multi-prime RSA. Also, since the
complexity of the ECM is dominated by the size of the smallest factor of N , it
follows that the primes should be roughly the same size in order to maximize
the runtime of the ECM. Thus, balanced primes are always used in Takagi’s
scheme.

In Table 10.2, the maximum safe number of (balanced) primes, bmax, along
with the form of the modulus is given for several common modulus sizes. The
data is the same as that for multi-prime RSA (Table 9.1), and is determined
by the crossover point of the expected runtimes of the NFS and ECM (recall
equations (2.1) and (2.2)) for each modulus size.

TABLE 10.2: Maximum number of
safe primes for multi-power RSA

Bitlength 1024 4038 4096 8192
bmax 3 3 4 5

Modulus p2q p2q p3q p4q

The security of Takagi’s scheme, for a given modulus size, will be roughly
the same for all safe values of b. Once the number of primes is increased beyond
the maximum number given in Table 10.2, however, the security is decreased.
Once the safe number of primes has been exceeded, the level of security, for
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a fixed modulus size, continues to decrease with increasing number of primes
in the modulus.

10.2.1 Factoring with a Hint

The modulus can be efficiently factored when enough of the most or least
significant bits of one of the primes is known. The attack is a direct gener-
alization of Theorem 6.1 (factoring an RSA modulus with a hint) as applied
to the modulus N = pb−1q. The original attack for moduli N = pb−1q, for
known most significant bits of p, is the Lattice Factoring Method (LFM) of
Boneh, Durfee and Howgrave-Graham [32].

Theorem 10.1. Let N = pb−1q for some known integer b ≥ 2 where p and q
are balanced primes. If at least 1/b of the most or least significant bits of p or
if at least (b − 1)/b of the most or least significant bits of q are known, then
N can be factored in time polynomial in log(N).

The proof follows directly from Theorem 6.1. When the most significant
bits of p (or q) are known the result of Corollary 2.9 can be directly applied
since we know an approximation of p (or q). When the least significant bits are
known, we can easily construct a monic linear polynomial whose root allows
us to factor the modulus.

10.3 Small Private Exponent Attacks

There is a collection of lattice-based attacks on a slightly relaxed version of
Takagi’s scheme, that are generalizations of Boneh and Durfee’s lattice-based
attacks on RSA (Section 5.2). The attacks are given by Itoh, Kunihiro and
Kurosawa [116], and apply to Takagi’s scheme when the public exponent and
d are defined modulo (p−1)(q−1) instead of modulo λ′(N) = lcm(p−1, q−1).
The strongest attack, [116, Theorem 5], is given below.

Attack 10.2. For every ε > 0, there exists an n0 such that for every n > n0

the following holds: Let N = pb−1q be an n-bit modulus with balanced primes,
for known b ≥ 2, let e = Nα be a valid public exponent in Takagi’s scheme
and let d = N δ be defined so that ed ≡ 1 (mod (p − 1)(q − 1)). Given (e, N),
if the private exponent satisfies

δ <
2 −√

αb

b
− ε,

the modulus N can be factored in time polynomial in n and 2b, provided that
Assumptions 2.15 and 2.14 hold.
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Notice that from the key equation ed = 1 + k(p− 1)(q − 1), it follows that
(x0, y0, z0) = (k, p, q) is a solution, modulo e, of the polynomial

fe(x, y, x) = 1 + x(y − 1)(z − 1).

Using this polynomial as a starting point, Itoh et al. compute the root
(x0, y0, z0), and hence the factorization of the modulus, using Coppersmith’s
techniques. To obtain the result given above, however, the attack uses geo-
metrically progressive matrices to bound the volume of a sub-lattice (cf. [29])
and also uses the side information N = pb−1q to reduce the complexity of the
polynomials, and hence the lattice, used (cf. [29], [71]). The work involved
in justifying and mounting the attack is non-trivial. For full details of the
justification see [116].

When the public exponent is full sized, α ≈ 2/b, the bound on the private
exponent in the attack simplifies to

δ <
2 −√

2
b

− ε,

which recovers Boneh and Durfee’s sub-lattice result (Attack 5.4) when b = 2.
In addition to the main result above, Itoh et al. also show variants of the
attack with bounds that recover Wiener’s bound and Boneh and Durfee’s
lattice bound (N0.2847) bound when b = 2. The bounds in all of these analogs,
when the public exponent is full sized, are given in the Table 10.3.

TABLE 10.3: Small private exponent
bounds for Takagi’s scheme

Wiener Lattice Sub-lattice
N = pq 0.2500 0.2847 0.2929
N = p2q 0.1667 0.1898 0.1953
N = p3q 0.1250 0.1424 0.1464
N = p4q 0.1000 0.1139 0.1172

In practice, the attack requires large lattice dimensions to break instances
with d approaching the (asymptotic) bounds. Some experimental results by
Itoh et al. [116, Table 4], are shown in Table 10.4. The bounds correspond to
the generalization of Attack 5.3 (i.e., without using sub-lattices). Here δexp

is the largest size of d = N δ that they could successfully factor the modulus
with. For a lattice with dimension dim(L), the bounds suggested by the actual
lattice used are given by δL and the asymptotic bound is given by δ∞. The
data corresponds to instances with (roughly) a 1024-bit modulus.
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TABLE 10.4: Effectiveness of small
private exponent attacks for Takagi’s scheme

δexp δL δ∞ dim(L)
N = pq 0.275 0.220 0.285 117
N = p2q 0.125 0.116 0.190 171
N = p3q 0.060 0.062 0.142 225

10.4 Partial Key Exposure Attacks

There are several partial key exposure attacks that can be applied to Tak-
agi’s scheme. When the public exponent is small there are two partial key
exposure attacks, by May [164], that apply to Takagi’s scheme when some of
the bits of the CRT-exponents are known. These are generalizations of the
small CRT-exponent attacks on CRT-RSA (from Section 8.3) and both use
Corollary 2.9. Unlike the partial key exposure attacks on CRT-RSA, however,
the fraction of bits needed depends on whether the bits come from dp or dq.

The first attack applies to instances with public exponents up to N (b−1)/b2

and requires some of the most significant bits of one of the CRT-exponents to
be known. The attack is a generalization of Theorem 8.4. The original attack,
for known most significant bits of dp, was given by May [164, Theorem 11].

Theorem 10.3. Let N = pb−1q be an n-bit modulus with balanced primes,
for known b ≥ 3, let e = Nα ≤ N (b−1)/b2 be a valid public exponent for
Takagi’s scheme, and let dp and dq be the CRT-exponents satisfying edp ≡ 1
(mod p − 1) and ed1 ≡ 1 (mod q − 1). Given d̂p such that

|dp − d̂p| ≤ N
(b−1)

b2
−α,

or d̂q such that

|dq − d̂q| ≤ N
1

b2
−α,

the modulus can be factored in time polynomial in n.

The second attack can be mounted when some of the most or least sig-
nificant bits of one of the CRT-exponents is known. The public exponent,
however, must be very small in order for the attack to be efficient since the
runtime is linear in e. The attack is a generalization of Theorem 8.5. The
original attack, for known least significant bits of dp, was given by May [164,
Theorem 10].

Theorem 10.4. Let N = pb−1q be an n-bit modulus with balanced primes,
for known b ≥ 3, let e � N1/b be a valid public exponent for Takagi’s scheme,
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and let dp and dq be the CRT-exponents satisfying edp ≡ 1 (mod p − 1) and
edq ≡ 1 (mod q − 1). Given any of

1. Mp ≥ N1/b2 and d̃p = dp mod Mp,

2. d̂p such that |dp − d̂p| ≤ N (b−1)/b2 ,

3. Mq ≥ N (b−1)/b2 and d̃q = dq mod Mq,

4. d̂q such that |dq − d̂q| ≤ N1/b2 ,

the modulus can be factored in time polynomial in n and e.

The proofs of Theorems 10.3 and 10.4 follow directly from the proofs given
for Theorems 8.4 and 8.5, respectively. All of the bounds are obtained by ap-
plying Corollary 2.9 to an approximation of one of the primes that is con-
structed from one of the CRT key equations. Due to the structure of the
modulus, the amount of bits needed from dp is much less than that needed
from dq and this difference increases as b increases.

When the public exponent is very small, e = 216 + 1 for example, and the
CRT-exponents are full sized, these attacks can be used to factor the modulus
given only 1/b bits of dp or (b − 1)/b bits of dq. This is the same number of
bits needed from p or q, respectively, in the factoring with a hint attack from
above.

10.5 Common Modulus Attack

Guo’s common modulus attack (as described in Section 9.5.2) can also be
mounted against Takagi’s scheme. The attack, as stated for Takagi’s scheme
is given in the following.

Theorem 10.5. Let N = pb−1q, for some b ≥ 2, let e1, e2, e3 ≥ Nα be valid
public exponents for Takagi’s scheme with modulus N , and let d1, d2, d3 < N δ

be their corresponding private exponents defined modulo λ′(N). If the private
exponents satisfy

δ <
α

3
− logN (2),

then the modulus can be factored in time polynomial in log(N) with non-
negligible probability.

Since a full sized public exponent in Takagi’s scheme has size about N2/b,
the attack is expected to work for private exponents up to about N2/(3b).
Thus, unlike in the multi-prime case, the effectiveness of the attack decreases
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TABLE 10.5: Common modulus bounds
for Takagi’s scheme

N =pq N =p2q N =p3q N =p4q

δ 0.3333 0.2222 0.1667 0.1333

with increasing number of primes in the modulus. The bounds from the attack,
for a full sized public exponent, are shown Table 10.5 for the first few values
of b.

In practice, the attack works quite well, as is illustrated in Table 10.6 (taken
from Hinek and Lam [108, Tables 4 and 5]). The data shows the success rate
of mounting the attack when b = 3, 4, for typical modulus sizes. The success
rates are the averages over 10,000 trials for the 1024- and 2048-bit moduli and
over 1,000 trials for the 4096-bit moduli.

TABLE 10.6: Effectiveness of common modulus attack for
Takagi’s scheme

N = p2q N = p3q

δ 1024-bit 2048-bit 4096-bit δ 4096-bit
0.20000 0.9243 0.9234 0.8980 0.150 0.922
0.21000 0.9206 0.9181 0.9330 0.160 0.916
0.21500 0.9200 0.9242 0.9110 0.161 0.915
0.22000 0.9228 0.9234 0.9110 0.162 0.918
0.22100 0.9222 0.9209 0.9350 0.163 0.919
0.22200 0.7101 0.6470 0.5180 0.164 0.916
0.22220 0.5066 0.3289 0.1440 0.165 0.927
0.22222 0.4847 0.3121 0.1240 0.166 0.923
0.22300 0.1082 0.0108 0.0000 0.167 0.010
0.22400 0.0120 0.0002 0.0000 0.168 0.000

10.6 Multi-Exponent RSA

We conclude this chapter by considering multi-power RSA with public
and private exponents defined modulo φ(N). To differentiate between Takagi’s
scheme, we will simply refer to this variant as multi-exponent RSA. Here
we have the usual relation

ed ≡ 1 (mod φ(N)),

which yields the key equation

ed = 1 + kφ(N),
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where k is some positive integer. Encryption and standard decryption are the
same as RSA. Decryption can also be done by Chinese remaindering. Notice
that Euler’s totient function, for N = pb−1q, is given by

φ(N) = pb−2(p − 1)(q − 1) = N − pb−1 − pb−2q + pb−2.

Letting s = N − φ(N), and assuming balanced primes, it follows that

|s| = |N − φ(N)| = pb−2(p + q − 1) < cN (b−1)/b,

for some small constant that depends on b but not on N . Therefore, the bound
on s for multi-exponent RSA is essentially the same as the bound on s for
multi-prime RSA when each modulus has the same total number of primes
(i.e., b = r). It follows that all the attacks on multi-prime RSA (Chapter 9) in
which N − s is used in place of φ(N) can be applied to multi-exponent RSA,
resulting in the same bounds. In addition to all of these attacks, however,
the special structure of φ(N) leads to even stronger small private exponent
and partial key exposure attacks for multi-exponent RSA. In particular, these
attacks are possible since both p and pb−2 divide φ(N).

10.6.1 Small Private Exponent Attacks

There are two small private exponent attacks that are each stronger than
those from Chapter 9 (multi-prime RSA). Both attacks are given by May [163],
and both use Corollary 2.9. The first attack is the strongest known attack
when b = 3 (i.e., N = p2q). The attack was originally presented by May [163,
Theorem 3].

Theorem 10.6. Let N = pb−1q be multi-exponent RSA modulus with balanced
primes (and known b ≥ 3), let e be a valid public exponent and let d = N δ be its
corresponding private exponent defined modulo φ(N). If the private exponent
satisfies

δ ≤ b − 1
b2

,

then the modulus can be factored in time polynomial in log(N).

The second attack is the strongest known attack for b ≥ 4. The attack, like
Boneh, Durfee and Howgrave-Graham’s LFM ([32]), becomes stronger with
increasing b and can (asymptotically) break instances with private exponents
up to the size of N . The attack was originally presented by May [163, Theorem
6].

Theorem 10.7. Let N = pb−1q be multi-exponent RSA modulus with balanced
primes (and known b ≥ 3), let e be a valid public exponent and let d = N δ be its
corresponding private exponent defined modulo φ(N). If the private exponent
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satisfies

δ ≤
(

b − 2
b

)2

,

then the modulus can be factored in time polynomial in n.

The proofs of both results follow from May’s observation that multiplying
the key equation ed = 1 + kφ(N) by E = e−1 mod N results in an equation
of the form

d − E = cpb−2,

where c is some integer. Thus, E is an approximation of a multiple of
p, p2, . . . , pb−2 with additive error d. When d is small enough, so that E is
a good enough approximation for Corollary 2.9, the prime p can be com-
puted. The bound in Theorem 10.6 is obtained by considering E to be an
approximation of a multiple of p while the bound in Theorem 10.7 is obtained
by considering E to be an approximation of a multiple of pb−2. Note that
similar results hold for other multiples between p and pb−2 when b ≥ 5, but
these will yield weaker results.

In Table 10.7, we illustrate the (asymptotic) bounds for the best known
small private attacks on multi-exponent RSA, multi-prime RSA and Takagi’s
scheme for the first few small values of b. For multi-prime RSA, b = r is number
of primes in the modulus. The first column of bounds (b = 2) corresponds to
RSA. As the bounds show, as the number of primes in the modulus increases,
multi-exponent RSA becomes more vulnerable to the small private attacks
while multi-prime RSA and multi-power RSA (Takagi’s scheme) become less
vulnerable.

TABLE 10.7: Small private exponent bounds for multi-power RSA
b = 2 b = 3 b = 4 b = 5 b = 6 b = 7

Multi-exponent 0.2929 0.2222 0.2500 0.3600 0.4444 0.5102
Takagi 0.2929 0.1953 0.1464 0.1172 0.0976 0.0837

Multi-prime 0.2929 0.1835 0.1340 0.1056 0.0871 0.0742

10.6.2 Partial Key Exposure Attacks

The small private exponent attack on multi-exponent RSA can be easily
generalized into partial key exposure attacks, as was shown by May [163].
Each small private exponent attack leads to an attack that requires some of
the most or least significant bits of the private exponent. From Theorem 10.6,
we have the following corollary which was originally given in [163, Corollaries
4,5].
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Corollary 10.8. Let N = pb−1q be a multi-exponent RSA modulus with bal-
anced primes (and known b ≥ 3), let e be a valid public exponent and let
d = N δ be its corresponding private exponent defined modulo φ(N). Given d̂
such that

|d − d̂| ≤ N
b−1
b2 ,

or given d̃ = d mod M for some known M satisfying

M ≥ N1− b−1
b2 = N

b2−b+1
b2 ,

the modulus can be factored in time polynomial in n.

From Theorem 10.7, we have the following corollary which was originally
given in [163, Corollaries 8,9].

Corollary 10.9. Let N = pb−1q be multi-exponent RSA modulus with bal-
anced primes (and known b ≥ 3), let e be a valid public exponent and let
d = N δ be its corresponding private exponent defined modulo φ(N). Given d̂
such that

|d − d̂| ≤ N( b
b+2 )

2

,

or given d̃ = d mod M for some known M satisfying

M ≥ N1−( b
b+2 )

2

= N
4(b−1)

b2 ,

the modulus can be factored in time polynomial in n.

The results for both corollaries are easily obtained by writing the private
exponent as d = d1M +d0, where |d0| < M , and applying the same techniques
as in the proofs of Theorems 10.6 and 10.7. In particular, when d1M is given
and d0 is unknown, we know the most significant bits of d. In this case, letting
E = e−1 mod N , it follows that multiplying the key equation by E yields

d0 + E(ed1M − 1) = cpb−2,

for some integer c, and so we know an approximation of a multiple of both p
and pb−2 (given by E(ed1M − 1)). Alternatively, when M and d0 are given
and d1 is unknown, we know the least significant bits of d. In this case, letting
E = (eM)−1 mod N , it follows that multiplying the key equation by E yields

d1 + E(ed0 − 1) = cpb−2,

for some integer c, and so we know an approximation of a multiple of both
p and pb−2 (given by E′(ed0 − 1)). In all cases, the bounds are obtained so
that the approximations can factor the modulus using Corollary 2.9. For more
detail, we refer the reader to the original work [163, 162].

When the private exponent is full sized, Corollary 10.8 requires 1−(b−1)/b2

of the most or least significant bits of the private exponent, while Corol-
lary 10.9 requires 4(b−1)/b2 of the most or least significant bits of the private
exponent.
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10.7 Additional Notes

A hierarchy of RSA variants can be characterized by the form of the mod-
ulus used. Following, and generalizing, the naming convention used by Boneh
and Shacham [34], RSA with a modulus of the form N = pa1

1 · · · par
r is called

multi-factor RSA. This is the most general form. When each prime in the
modulus has multiplicity one, we have multi-prime RSA, with RSA as the
special case when there are only two primes in the modulus. When at least
one prime has multiplicity greater than one, we have multi-power RSA (gen-
eralizing the notion of multi-power RSA used in this chapter). Multi-power
RSA can then be further divided depending on how the public and private
exponents are defined (and how decryption is carried out). In this work, we
call multi-power RSA with exponents defined modulo φ(N) as multi-exponent
RSA. When the exponents are defined modulo λ′(N), and decryption uses
Hensel lifting, we have Takagi’s scheme and its extensions.

10.1 Lim, Kim, Yie and Lee [151] generalize Takagi’s scheme for moduli of
the form N = prqs for r, s > 1. Optimal choices of r, s are given, regarding
efficiency and security against factoring attacks.

10.2 A factoring method specifically for composites N = p2q was proposed
by Peralta and Okamoto [193]. The method is a variation of ECM and was
suggested to be slightly faster than the ECM. Ebinger and Teske [72], however,
implemented the attack and did not observe any reduction in time compared
to the ECM.

10.3 The small private exponent attack by Itoh et al. [116] is derived in the
relaxed version of Takagi’s scheme. Since g = gcd(p − 1, q − 1) is expected to
be quite small when the primes are randomly generated, see Appendix A, the
results should also apply to the polynomial f ′

e(x, y, z) = g + x(y − 1)(z − 1),
although this is not proven. If it does hold, Takagi’s scheme can be attacked
by mounting an exhaustive search on gcd(p− 1, q − 1). In particular, for each
candidate of gcd(p − 1, q − 1), say g′, the attack can be mounted using the
polynomial g′ + x(y − 1)(z − 1), until the modulus is factored.

10.4 In Boneh, Durfee and Howgrave-Graham’s Lattice Factoring
Method [32], the most significant bits of p are guessed. For small values of
b, as used in Takagi’s scheme, this is infeasible since the search space required
is too large. For large enough values of b, however, the attack can be quite ef-
ficient. In particular, when b =

√
log(p), the (expected) asymptotic runtimes

of the NFS, ECM and LFM are all about the same, and when b = log(p), the
LFM can factor the modulus in time (and space) polynomial in log(N).

Another factoring method for composites prq with large r is given by
Chida, Uchiyama and Saito [43].



Chapter 11

Common Prime RSA

In this chapter, we consider a variant of RSA that can have private exponents
smaller than N1/4 and yet resists all known small private exponent attacks
such as Wiener’s continued fraction attack and other lattice-based attacks.
The variant, unlike multi-prime RSA and Takagi’s scheme which also accom-
plish this by having more primes in the modulus, is a special case of RSA in
which the RSA primes are constructed with addition structure.

Some of the content in this chapter has been published in [105]:

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 82–98, 2006.
c© Springer-Verlag Berlin Heidelberg 2006.

It is reproduced here with permission of the publisher.

11.1 Common Prime RSA

Let p and q be primes such that p− 1 and q − 1 have a large common fac-
tor. It was suggested by Wiener [249], that primes with this property could be
used as a countermeasure for his continued fraction attack. A variant of RSA,
which we will call Common prime RSA, was introduced by Hinek [105],
as a further investigation into Wiener’s observation. In particular, the mo-
tivation was to determine whether instances of RSA with private exponents
smaller than N1/4 can be secure in light of the newer lattice-based small pri-
vate attacks, by Boneh and Durfee, that had been discovered since Wiener’s
observation.

Common prime RSA is a variant of RSA in which the primes have a very
special structure. For some large prime g let p = 2ga + 1 and q = 2gb + 1 be
balanced primes with the restrictions that gcd(a, b) = 1 and h = 2gab + a + b
is prime. The first restriction ensures that gcd(p − 1, q − 1) = 2g while the
second ensures that (pq − 1)/2 = gh is roughly the same size as N = pq. We
will call primes p and q satisfying the above properties common primes,
since p− 1 and q − 1 share a large common prime factor. Further, we will call
g the common factor of the primes. Notice that common primes have the

201
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property that Carmichael’s lambda function

λ(pq) = lcm(p − 1, q − 1) = lcm(2ga, 2gb) = 2gab,

can be significantly different from Euler’s phi function

φ(pq) = (p − 1)(q − 1) = 2ga2gb = 2gλ(pq),

when the common factor is large enough. We define common prime RSA
to be any instance of RSA that uses balanced common primes in addition to
defining the public and private exponents as inverses modulo λ(N) = 2gab.

From the structure of the common primes, it also follows that we can
express the RSA modulus N = pq as

N = pq = (2ga + 1)(2gb + 1) = 2g(2gab + a + b) + 1 = 2gh + 1,

and N − 1 as

N − 1 = 2g(2gab + a + b) = 2gh.

Throughout this chapter we will use γ to denote the size of the common factor
with respect to the size of the modulus. That is, we let g = Nγ . Since we only
consider instances of RSA with balanced primes it follows that g ≤ N1/2 and
so 0 ≤ γ ≤ 1/2.

We will be especially interested in instances of common prime RSA with
a small private exponent and public exponent with size N1−γ or N . Since
the public and private exponents are defined modulo λ(N) = 2gab, the public
exponent is expected, with high probability, to have size about λ(N) ≈ N1−γ

when a small private exponent is used. Thus, it is natural to be interested in
public exponents with this size. We consider the larger public exponent size
since that is the expected size for RSA, in general, when the private exponent
is small. These instances can be generated from instances with public exponent
about N1−γ by adding an appropriate multiple of λ(N) to the public exponent.

11.1.1 Efficiency of Common Prime RSA

A simple algorithm to generate common primes is given in [105]. Given n
and γ, the algorithm generates balanced n/2-bit common primes p = 2ga + 1
and q = 2gb + 1 such that g = Nγ and h = 2gab + a + b are primes and
gcd(a, b) = 1. The algorithm basically selects random g, a and b until all the
desired properties are met. The algorithm is rather inefficient. For example,
it was observed by Hinek [105, 106] that generating two 512-bit balanced
common primes took about 350 times that needed to generate two random
balanced 512-bit primes. There was a lot of variance in the trials, but the
time was always significantly greater than that for RSA. The algorithm can
be optimized, but, in general, the additional structure needed for the common
primes will require additional effort for their generation.
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11.1.2 Breaking Common Prime RSA

Since common prime RSA is just a special case of RSA, it can be broken
in the same way as RSA. In particular, we will assume that an instance of
common prime RSA is broken when the modulus is factored. It is sufficient to
compute the private exponent since ed − 1 = kλ(N) gives a multiple of λ(N)
and Miller’s results [173] can be used to probabilistically factor the modulus.

11.2 Factoring the Modulus

In this section we consider attacks that exploit the special structure of the
common primes to help factor common prime moduli. Each of the attacks
makes use of either the equation for the modulus

N = 2g(2gab + a + b) + 1,

or the related equation

N − 1 = 2gh,

where g and h are primes.
When the common factor g is too close to N1/2, it has been shown by

McKee and Pinch [168], that the special structure of the common primes p
and q lead to an efficient factoring method for N = pq. We restate their result
as follows.

Attack 11.1. Let N be a common prime RSA modulus with balanced primes
having common factor g = Nγ . It is expected that the modulus can be factored
with O(N1/4−γ/2) operations, each requiring time polynomial in log(N).

Their method is a modification of Pollard’s rho method. In particular, the
usual map x �→ x2 + 1 mod N is replaced with x �→ xN−1 + 3 mod N . Letting
f(x) = xN−1 + 3 mod N , and starting with some initial value x1 = x2, the
attack consists of repeatedly computing

x1 = f(x1)
x2 = f(f(x2)),

until gcd(x1 −x2, N) > 1 and the factorization is revealed. Since N −1 = 2gh
and p − 1 = ga there can be at most a values of xN−1 mod p. Thus the
expected number of steps before a collision (i.e., d > 1) is found is O(

√
a) =

O(N1/4−γ/2). For any integer � > 0, when the common factor has size

γ ≈ 1
2
− 2�

log2(N)
,
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the expected complexity of the attack roughly 2�. Since the common primes
are balanced, we know that γ < 1/2. However, this attack shows that γ should
not be chosen too close to its upper limit.

For more detail about Pollard’s rho method, see Pollard [194] or Brent [36].

11.2.1 Known a and b

Here we show that knowledge of both a and b leads to a very efficient
method of factoring a common prime modulus N . The main result, from
[105], is given in the following theorem.

Theorem 11.2. Let N be a common prime RSA modulus. Given the modulus
N and a and b from the common primes, the modulus can be factored in time
polynomial in log(N).

Proof: Given a, b and N , notice that g is the only unknown in the equation
for the modulus N = 2g(2gab+a+b)+1. Rearranging this equation we obtain
the quadratic equation

4abg2 + 2(a + b)g − N + 1 = 0,

which has solutions

−2(a + b) ±√4(a + b)2 − 4(4ab)(−N + 1)
2(4ab)

.

Since the common factor g is positive, it follows that it can be computed, after
some simplification, as

g =
−(a + b) +

√
a2 + (4N − 2) ab + b2

4ab
.

Once g, a and b are all known the factorization of the modulus is also known.
Since all computations can be done in time polynomial in log(N), the result
follows. �

While this is a very strong result, it is unclear how a and b might be
obtained from N (or from a valid public key (e, N)) other than by simply
guessing. For an exhaustive search on a and b to have an expected complexity
of at least 2�, it follows that g should be chosen so that

γ <
1
2
− �

2 log2(N)
,

since a and b are each of size N1/2−γ .
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11.2.2 Known g

Here we show that knowledge of g leads to methods for factoring a common
prime modulus. Unlike in the previous attack with known a and b, however,
the efficiency of the methods depends on size of the common factor. There
are two scenarios that we must consider. The first, when g ≥ a + b, always
leads to an efficient method for factoring N . Since the primes are balanced
this is equivalent to g ≥ N1/4. The main result, from [105], is contained in
the following theorem.

Theorem 11.3. Let N be a common prime RSA modulus with balanced
primes having common factor g ≥ a+b. Given the modulus N and the common
factor g, the modulus can be factored in time polynomial in log(N).

Proof: First we assume that g > a+ b. Given N and g, let M = (N −1)/(2g)
and c = a + b so that the equation for the modulus

N = 2g(2gab + a + b) + 1,

can be written as
M = 2gab + c.

Since c = a + b < g, by assumption, reducing this equation modulo g yields

c = M mod g,

and thus, c = a + b is known. Substituting b = c − a back into the equation
for the modulus N = 2g(2gab + a + b) + 1 yields, after some rearrangement,
the quadratic equation

2ga2 − 2gca + (N − 1)/(2g) − c = 0,

which has solutions

2gc ±
√

4g2c2 − 4(2g)
(

N−1
2g − c

)
2(2g)

,

or more simply
gc ±√2g2c2 − (N − 1) + 2gc

2g
.

By the symmetry of a and b, it follows that these two solutions correspond to
a and b. Computing 2ga + 1 and 2gb + 1 thus yields the factorization of N .

Next we assume that g = a+b. Starting with the equation for the modulus

N = 2g(2gab + a + b) + 1,

we replace a + b with g to obtain, after some manipulation,

N − 1
4g2

= ab +
1
2
.
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We next replace b with g−a to obtain, after some rearrangement, the quadratic
equation

a2 − ga +
N − 1
4g2

− 1
2
,

which has solutions

g

2
± 1

2

√
g2 − 4

(
N − 1
4g2

− 1
2

)
.

Again, by the symmetry of a and b, these solutions correspond to a and b.
Computing 2ga + 1 and 2gb + 1 thus yields the factorization of N .

Since all computations, for each case considered, can be done in time poly-
nomial in log(N), the result follows. �

Since p = 2ga + 1, notice that with g > N1/4 known, we can also use
Coppersmith’s factoring with a hint method to factor the modulus, since we
know the N1/4 least significant bits, in the relaxed sense, of each of the primes.

The second scenario that we examine is when g < a + b. Since the primes
are balanced, this is equivalent to g < N1/4, which has been considered by
McKee and Pinch [168]. We restate their result in the following theorem.

Theorem 11.4. Let N be a common prime RSA modulus with balanced
primes and common factor g < a + b. Given the modulus N and g, the modu-
lus can be factored with O(N1/4−γ) expected operations, where each operation
requires time polynomial in log(N).

Proof: With g known, we can compute u and 0 ≤ v < 2g, by the division
algorithm, such that

N − 1
2g

= 2gu + v.

Since we know the modulus satisfies N − 1 = 2g(2gab + a + b), it follows that

a + b = v + 2gc

ab = u − c,

for some integer c. For any x that is relatively prime to N , we then have

xu2g ≡ xab2g+c2g ≡ xc2g (mod N),

since u = ab+c and λ(N) = 2gab (which implies x2gab ≡ 1 (mod N)). Letting
y = x2g, we then have that

yu ≡ yc (mod N).
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From this relation, the unknown c is then found using Shanks’ baby-step
giant-step methodology. For some d >

√
c, we compute the giant steps

y0, yd, y2d, . . . , yd2
mod N,

and the baby steps

yu, yu − 1, yu−2, . . . , yu−d mod N.

Searching the two lists for a collision, there will be an r and s such that

yrd ≡ yu−s (mod N),

which reveals c = rd + s. Once c is known, we can solve for a and b from the
system of equations {ab = u−c, a+b = v+2gc}, and hence factor the modulus.
Computing, sorting and searching the lists will take O(d log(d)) operations,
where d >

√
c. All that remains is to find a bound for c. Since a + b = v + c2g

and v ≥ 0, it follows that c ≤ a + b ≈ 2N1/2−γ . Therefore, ignoring the log
term, the complexity is dominated by the O(N1/4−γ/2) operations needed to
create, sort and search the lists. Since each individual operation can be done
in time polynomial in log(N), the result follows. �

As can be seen by the result, the efficiency of the factoring method depends
on the size of g. For the method to run in time polynomial in log(N), the size
of g should be polynomially close to N1/4. That is, γ ≈ 1

4 −m log(log(N)) for
some constant m. To obtain an expected complexity of at least 2�, it follows
that g should be chosen so that

γ <
1
4
− �

log2(N)
.

As with the attack with known a and b, it remains to show how g might
be obtained. For an exhaustive search on g to have an expected complexity of
at least 2�, it follows that g should be chosen so that

γ >
�

log2(N)
.

However, as will be shown in the next subsection, it is possible to compute
the common factor g if it is chosen too small.

11.2.3 Factoring N − 1 (or Computing g)

Starting with the equation for the common prime modulus

N = 2g(2gab + a + b) + 1,

and recalling that h = 2gab + a + b, we have

N − 1 = 2gh.
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Therefore, we can obtain g (and h) by simply factoring N − 1. Since N − 1 is
essentially the same size as N , it is expected that the NFS will factor (N−1)/2
in about the same time as factoring N . Factoring (N − 1)/2 with the ECM
might be more fruitful, however, depending on how unbalanced g and h are.
Clearly, if g is chosen too small, it will easily be recovered by the ECM.

As a rough estimate of evaluating the minimum size of g for a given modu-
lus size, we equate the heuristic runtime of the ECM, given in equation (2.2),
with that of factoring the modulus with the NFS, given by equation (2.1). For
a given modulus size, let γecm denote the largest value for γ such that for any
γ < γecm, the expected runtime of the ECM is less than the expected runtime
of the NFS for that size of modulus. In Table 11.1, we show some values of
γecm (and their bitlength) for some common modulus sizes (with bitlength n).

TABLE 11.1: Safe
sizes for common factors

n γecm bits
1024 0.284 292
2048 0.258 529
4096 0.229 940
8192 0.200 1640

It should be pointed out that these bounds for γecm are just estimates.
While the formulas for the expected runtimes for the ECM and NFS give a
good indication of the asymptotic runtime of the methods, the current factor-
ing records should also be considered. For example, as of the start of 2009, the
largest factor obtained by the ECM is a 220-bit number. While this record
will be increased as experiments are continued and more computing resources
become available, the bound for g for 1024-bit moduli will offer some security
for at least a few years to come. For the larger modulus sizes shown in the
table, factoring (N − 1)/2 with a minimum g as shown will, presumably, be
infeasible with the ECM for many years to come.

11.3 Small Private Exponent Attacks

While common prime RSA is designed to resist small private exponent
attacks, it is not completely immune to them. In this section we collect the
best known small private exponent attacks on common prime RSA. In addition
to exploiting the special structure of the common primes, the attacks in this
section will also use the key equation

ed = 1 + k(2gab),

along with the fact that the private exponent may be small.
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11.3.1 Wiener’s Attack

We begin by restating Wiener’s small private exponent attack, originally
from [249] and shown as Theorem 5.1, for common prime RSA, in the following
theorem.

Theorem 11.5. Let N be a common prime RSA modulus with balanced
primes and common factor g = Nγ , let (e, N) be a valid public key and let
d be its corresponding private exponent defined modulo λ(N), where e = Nα

and d = N δ. If the private exponent satisfies

δ <
3
4
− α

2
− γ − logN (

√
12),

the modulus can be factored in time polynomial in log(N).

Proof: Just as in the proof of Theorem 5.1, except that gcd(p−1, q−1) = 2g
here, we can write the key equation as

ed = 1 + kλ(N) = 1 +
k

2g
φ(N) = 1 +

k

2g
(N − s),

which, after dividing through by dN and rearranging, leads to∣∣∣∣ e

N
− k

2gd

∣∣∣∣ =
∣∣∣∣ −ks

2gdN
+

1
dN

∣∣∣∣ <
∣∣∣∣ ks

2gdN

∣∣∣∣ = ks

2gdN
. (11.1)

Next, notice that

δ <
3
4
− α

2
− γ − logN (

√
12) =⇒ 2δ <

3
2
− α − 2γ − logN (12)

=⇒ 2δ + α − 1 + γ <
1
2
− γ − logN (12)

=⇒ N2δ+α−1+γ <
1
12

N
1
2−γ

=⇒ N δ+α−1+γN δ <
1
12

NN−γN− 1
2

=⇒ kd <
N

4g

1
3N

1
2

=⇒ kd <
N

4g

1
s

=⇒ ks

2gdN
<

1
2(2gd)2

,

and so we have

δ <
3
4
− α

2
− γ − logN (

√
24) =⇒ ks

gdN
<

1
2(2gd)2

. (11.2)
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Combining inequalities (11.1) and (11.2), it follows that∣∣∣∣ e

N
− k

2gd

∣∣∣∣ < 1
2(2gd)2

,

whenever the private exponent satisfies the bound in the theorem statement.
Therefore, from Theorem 2.2 (continued fractions), we know that k/(2gd), in
lowest terms, will be one of the convergents in the continued fraction expansion
of e/N . For common prime RSA, however, since the common factor g is prime
and recalling that gcd(k, d) = 1, we know that the denominator of the correct
convergent can only be one of d, 2d, gd or 2gd, and this allows us to easily
compute the private exponent d.

Let ci = ai/bi be the i-th convergent in the continued fraction expansion of
e/N . For each convergent i, compute di = gcd(N − 1, bi). Since N − 1 = 2gh,
with g and h prime, it follows that the correct convergent, dj say, will be one
of d, 2d, gd or 2gd and so the gcd computation will yield dj = d. For each
convergent, we try to factor the modulus with di as a candidate for d until we
succeed. Since the total number of convergents is polynomial in log(N) and
all computations require time polynomial in log(N), the result follows. �

It is interesting that while the special structure of the primes in common
prime RSA makes this variant less vulnerable to Wiener’s attack, in terms of
the bounds on the private exponent, it also makes the attack more efficient
when the common factor is large. In the original attack (Theorem 5.1), when
k/g ≥ 1 an additional search is required to compute a candidate for φ(N).
Here, since h is a prime, the gcd computation for di will always reveal d. Using
the same technique for RSA, in general, the gcd computation will reveal a
divisor of d.

11.3.2 Lattice-Based Attacks

All of the lattice-based attacks on small private exponent RSA use Cop-
persmith’s techniques to find small roots of polynomials that are based on the
key equation

ed = 1 + k(N − s),

when reduced modulo the public exponent. For common prime RSA, the
equivalent starting point is the equation

2ged = 2g + k(N − s),

which introduces another unknown. Reducing this equation modulo e, as in
the attacks for RSA, will lead to an attack on common prime RSA, but the
attack is much weaker than the similar attacks on RSA. Due to the special
nature of the common primes, however, there are some other lattice-based
attacks that are stronger. The two strongest are given below.
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The first attack uses Corollary 2.9 and exploits the fact that the common
factor g is a divisor of N − 1. In particular, when the private exponent is
small enough, we can compute a good enough approximation of a multiple
of g to allow us to factor N − 1 and to compute the private exponent. The
attack, by Hinek [105], is motivated by the techniques used by May [164, §3],
as illustrated in Attacks 8.4 and 8.5.

Theorem 11.6. For every ε > 0 there exists n0 such that for every n > n0 the
following holds: Let N be an n-bit common prime RSA modulus with balanced
primes and common factor g = Nγ , let e be a valid public exponent and let
d = N δ be its corresponding private exponent. If the private exponent satisfies

δ < γ2 − ε, (11.3)

then the modulus can be factored in time polynomial in n.

Proof: Let E = e−1 mod 2gh, where 2gh = N − 1, so that Ee = 1 + c2gh for
integer c. Since the public exponent must be odd, if the inverse does not exist,
we have completely factored N−1 and can use Theorem 11.9 in Section 11.3.3
to factor the modulus. Assuming the inverse does exist, we then multiply the
key equation

ed = 1 + kλ(N) = 1 + k2gab,

by e to obtain

Eed = E + E2kgab,

which, after some rearrangement, yields

d − E = −cd2gh + Ek2gab = (2Ekab − 2cdh)g.

Thus, E is an approximation of g up to an additive error of d = Nδ. Since g =
Nγ ≥ (N − 1)γ , it follows from Corollary 2.9, that if d < (N − 1)γ2

= Nγ2−ε

and (2Ekab−2cdh) is not a multiple of 2h, then d can be computed and N −1
can be factored in time polynomial in n. Since h is prime, if (2Ekab−2cdh) is
a multiple of h then 2Ekab must also be a multiple of h. However, this cannot
be true since h > a, b, k and by construction gcd(E, h) = 1. Therefore, 2Ekab
is not a multiple of h and hence (2Ekab − 2cdh) cannot be a multiple of h,
which completes the proof. �

The attack in Theorem 11.6 also leads to a simple partial key-exposure
attack. If the private exponent is written as

d = d22�2 + d12�1 + d0,

where everything is known except d1, then we can compute d1 (and hence
compute the private exponent) provided that d1 is small enough. The result
is given in the following corollary.
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Corollary 11.7. For every ε > 0 there exists n0 such that for every n > n0 the
following holds: Let N be an n-bit common prime RSA modulus with balanced
primes and common factor g = Nγ , let e be a valid public exponent and let
d be its corresponding private exponent. Let the private exponent be written
as d = d22�2 + d12�1 + d0, where everything is known except d1 = N δ. If the
unknown part of the private exponent satisfies

δ < γ2 − ε, (11.4)

the modulus can be factored in time polynomial in n.

The proof follows directly from the proof of Theorem 11.6, where the
private exponent is substituted with d22�2 +d12�1 +d0. Here, the key equation
is multiplied by E = e−12−�1 mod gh so that an equation

d1 − E = cg,

can be obtained, for some c that is not a multiple of h.
The second small private exponent attack on common prime RSA is by

Jochemsz and May [119]. We restate their result, generalized for arbitrary
public exponent, in the following attack.

Attack 11.8. For every ε > 0, there exists n0 such that for every n > n0, the
following holds: Let N be an n-bit Common Prime RSA modulus with balanced
primes and common factor g = Nγ , let e = Nα be a valid public key and let
d = N δ be its corresponding private key. When the private exponent satisfies
both

δ ≤ 2 − α − 1
4

√
4α2 − 28α + 37 − ε (11.5)

and

δ ≤ 3
8
− 1

4
α, (11.6)

then the modulus can be factored in time polynomial in log(N), provided that
Assumptions 2.15 and 2.14 hold.

Justification: We begin with the observation that lcm(p − 1, q − 1) = 2gab
can be written as (p−1)b and also as (q−1)a, since p−1 = 2ga and q−1 = 1gb.
Thus, we can write the key equation as both

ed = 1 + k(p − 1)b
ed = 1 + k(q − 1)a,

or, after some rearrangement as

ed − 1 + kb = kpb

ed − 1 + ka = kqa.
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Multiplying these equations together we then obtain

e2d2 + e(ka + kb − 2)d − kakb(N − 1) − ka − kb − 1 = 0, (11.7)

which has four unknowns. However, notice that each instance of k always
appears with either an a or a b. Thus, we can view the equation as having
only three unknowns: d, ka and kb. This motivates looking for small integer
solutions of the polynomial

f(x, y, z) = e2x2 + ex(y + z − 2) − (y + z + 1) − (N − 1)yz, (11.8)

since (x0, y0, z0) = (d, ka, kb) is a root. Defining the bounds

X = N δ

Y = Nα+δ+γ−1N1/2−γ = Nα+δ−1/2

Z = Nα+δ+γ−1N1/2−γ = Nα+δ−1/2,

notice that |x0| = |d| ≤ X, |y0| = |ka| ≤ Y , and |z0| = |kb| ≤ Z. This follows
since k ≈ Nα+δ+γ−1 and a, b ≈ N1/2−γ . With these bounds, it also follows
that

W = ‖f(xX, yY, zZ)‖∞ = N2α+2δ.

From Theorem 2.13, it follows that two linearly independent polynomials, that
are algebraically independent with f(x, y, z) and each having root (x0, y0, z0),
can be computed in polynomial time provided that the enabling equation

X7+9τ+3τ2
(Y Z)5+9τ/2 < W 3+3τ ,

is satisfied for any τ ≥ 0. If these polynomials are also algebraically indepen-
dent with each other (Assumption 2.15) and (x0, y0, z0) is the only solution of
f(x, y, z) (Assumption 2.14), then the modulus can be factored in polynomial
time.

Substituting the bounds X, Y, Z into the enabling equation yields(
3δ
)
τ2 +

(
12δ + 3α − 9/2

)
τ + 11δ + 4α − 5 < 0.

For any values of α and δ > 0 the left-hand side of this inequality is minimized
when

τ =
3 − 2α − 8δ

4δ
.

Substituting this value for τ back into the inequality gives

−16δ2 − 32δα + 64δ − 12α2 + 36α − 27
16δ

< 0,
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which, when solved for δ, yields the bound

δ ≤ 2 − α − 1
4

√
4α2 − 28α + 37 − ε,

where we have added ε > 0 to account for any small constants and low-order
terms that were ignored (implicitly in Theorem 2.13). The second condition
on the private exponent is obtained by ensuring that the optimal value of τ
used is not negative. That is, we force

τ =
3 − 2α − 8δ

4δ
≥ 0,

or, more simply,

δ ≤ 3
8
− 1

4
α.

Thus, for sufficiently large N , if Assumptions 2.15 and 2.14 hold, we can com-
pute (x0, y0, z0) = (d, ka, kb) and compute the factorization of N since d is
known. Since all computations can be done in time polynomial in log(N), the
result follows. �

11.3.3 Known g Attacks

When the common factor g is known, there are even stronger small private
exponent attacks. In Section 11.2.2, we saw that the common prime modulus
can be efficiently factored if g > N1/4 is known. Thus, we will only consider
attacks with g ≤ N1/4 here. The first attack, from Hinek [105], shows that
private exponents smaller than g are immediately exposed when g is known.

Theorem 11.9. Let N be a common prime RSA modulus with balanced
primes and common factor g = Nγ ≤ N1/4. Let e be a valid public expo-
nent and let d be its corresponding private exponent. If the private exponent
satisfies

d < g, (11.9)

the modulus can be factored in time polynomial in log(N).

Proof: Notice that reducing the key equation

ed = 1 + k2gab,

modulo the known common factor g yields

ed ≡ 1 (mod g),
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or more simply

d ≡ e−1 (mod g).

If d < g, it then follows that d = e−1 mod g. Once the private exponent is
known, we can compute the factorization of the modulus. Since all computa-
tions can be done in time polynomial in log(N), the result follows. �

The next attack can be mounted when the private exponent is greater than
the common factor.

Attack 11.10. For every ε > 0 there exists N0 such that for every N > N0

the following holds: Let N be a common prime RSA modulus with balanced
primes and common factor g = Nγ ≤ N1/4, let (e, N) be a valid public key,
and let d = Nδ be its corresponding private exponent. Given g, if the private
exponent satisfies

δ ≤ 1
6

(
13 − 8 γ − 6 α − 2

√
7 − 16 γ + 4 γ2

)
− ε,

the modulus N can be factored in time polynomial in log(N), provided that
Assumptions 2.15 and 2.14 hold.

Justification: Letting M = (N − 1)/2 and m = a + b, we can write the
equation for the modulus N = 2g(2gab + a + b) − 1 as

2gab = M − m,

and substituting this into the key equation ed = 1 + k2gab we have

ed = 1 + k(M − m),

where only d, k and m are unknown. Notice that reducing this equation mod-
ulo the public exponent e yields

−k(M − m) ≡ 1 (mod e),

which is just the small inverse problem solved by Boneh and Durfee. In this
case, we look for small solutions, modulo e, of the polynomial

fe(x, y) = Mx − xy + 1,

which has root (x0, y0) = (k, a + b). Once m = a + b is known, we can solve
the system of equation {m = a + b, (M − m)/(2g) = ab} for a and b, which
reveals the factorization of the modulus.

The rest of the details of the justification follow from the justification of
Attack 5.3. Briefly, we can define the bounds

X = Nα+δ+γ−1

Y = 2N1/2−γ ,
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so that |x0| = |k| ≤ X and |y0| = |a + b| ≤ Y . From Theorem 2.11, the
enabling condition for this polynomial is given by

X2+3τY 1+3τ+3τ2 ≤ e1+3τ , (11.10)

for any τ ≥ 0. Substituting the bounds X and Y into the enabling condition
gives

(3/2 − 3 γ) τ2 + (3 α + 3 δ − 9/2) τ + 2 α + 2 δ + γ − 5/2 < 0,

which can be optimized (i.e., minimizing the left-hand side) with

τ =
2α + 2δ − 3
2(2γ − 1)

,

to ultimately yield the bound

δ ≤ 1
6

(
13 − 8 γ − 6 α − 2

√
7 − 16 γ + 4 γ2

)
− ε,

where ε > 0 is added to account for small constants and low-order terms
that were ignored. When Assumption 2.15 is satisfied the two polynomials
obtained from the lattice reduction are algebraically independent and when
Assumption 2.14 holds, the root (x0, y0) = (k, a + b) is the only solution. As
described above, once a + b is known, we can easily factor the modulus. Since
all of the computations can be done in time polynomial in log(N), the result
follows. �

The bound in this attack can be improved by using the sub-lattice tech-
niques of Boneh and Durfee (see Attack 5.4) and Blömer and May (see At-
tack 5.6).

11.3.4 Summary of Attacks

Most of the bounds for the small private attacks are given for arbitrary
size public exponents. In Figure 11.1, we illustrate these attacks for the two
special cases e ≈ N1−γ and e ≈ N . As can be seen in the plots, the regions
that are known to be unsafe for RSA is greatly reduced with common prime
RSA. In particular, private exponents smaller than N0.2929 are considered
insecure for a typical instance of RSA. From the plots, we see that there are
many parameters choices for common prime RSA that admit “safe” instances
with private exponents much smaller than N1/2. Here, “safe” simply means
that there is no known attack, not that it is provably secure.

The bounds shown in Figure 11.1 show the unsafe regions of common prime
RSA when the modulus is sufficiently large for the factoring attacks to not ap-
ply. That is, we consider infinitely large moduli. When using a modulus with
finite size, however, the factoring attacks for N and N−1 must also be consid-
ered. In Figure 11.2, we show both the small private exponent bounds and the
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FIGURE 11.1: Small private exponent bounds for common prime RSA with
infinite modulus size (theory).
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FIGURE 11.2: Small private exponent bounds for common prime RSA with
finite modulus size (theory).

bounds from the factoring attacks, for several common modulus sizes. Here,
the bounds from the factoring attacks are all computed so that factoring N or
N − 1 requires about the same effort as factoring a 1024-bit modulus. As the
desired level of security increases, the “safe” region will become more narrow
for each modulus size. As can be seen, the region of unsafe private exponents
increases considerably when the factoring attacks are also considered.

The plots in Figures 11.1 and 11.2 are taken from Hinek [106, Chapter 6].
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11.4 Small CRT-Exponent Attacks

An interesting side effect of using common primes in the modulus, which
was done to make the cryptosystem less vulnerable to small private exponent
attacks, is that it makes using small CRT-exponents more vulnerable when
the common factor is large enough. In particular, we have the following attack.

Theorem 11.11. Let N be a common prime RSA modulus with balanced
primes and common factor g = Nγ , let (e, N) be a valid public key and
let dp, dq < N δ be the CRT-exponents corresponding to (e, N). If the CRT-
exponents satisfy

δ < γ2,

then the modulus can be (probabilistically) factored in time polynomial in
log(N).

Proof: Let E = e−1 mod N − 1, so that Ee = 1 + c(N − 1) = 1 + c2gab for
some integer c. Since the public exponent is odd, if this inverse does not exist
then we have completely factored N − 1 = 2gh. In particular, we know the
common factor g. When the inverse does exist, notice that multiplying one of
the CRT equations

edp = 1 + kp(p − 1) = 1 + kp2ga,

by E and rearranging yields

dp − E = (kp2a − c2hdp)g.

Therefore, E is an approximation of a multiple of g with additive error dp.
It follows from Corollary 2.9, that we can factor N − 1 provided δ < γ2

and (kp2a − c2hdp) is not a multiple of 2h. Since h > N1/2, it follows that
h > a, kp and so (kp2a − c2hdp) cannot be a multiple of 2h. Therefore, we
know the common factor g.

Once g is known, notice that reducing the CRT equation

edp = 1 + kp(p − 1) = 1 + kp2ga,

modulo g implies that edp ≡ 1 (mod g) or dp ≡ e−1 (mod g). However, since
dp, dq < g2 < g it follows that dp = e−1 mod g and dq = e−1 mod g. We can
then compute (edp − 1)(edq − 1) = kpkq(p − 1)(q − 1) = kpkqφ(N). With
this multiple of φ(N) we can (probabilistically) factor the modulus using the
results of Miller [173]. Since all computations can be done in time polynomial
in log(N), the result follows. �

When the common factor is greater than about N0.27, this attack becomes
stronger than the strongest small CRT-exponent on RSA (Attack 8.3).
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11.5 Additional Notes

The idea of using RSA primes with gcd(p− 1, q − 1) having a large prime
factor was first proposed in 1990 by Wiener [249], as one of the countermea-
sures for his continued fraction attack. Also in 1990, Girault [86] proposed an
identity-based identification scheme using primes with gcd(p−1, q−1) having
a large prime factor. Here the common factor is made public.

In 1994, Sakai, Morii and Kasahara [207] proposed some key generation
algorithms for RSA with public and private exponents satisfying ed ≈ N and
primes with gcd(p − 1, q − 1) having a large prime factor smaller than N1/4.
The large common factor is used to protect against Wiener’s attack since the
constant in the key equation is small.

In 1995, Lim & Lee [150] used RSA with gcd(p−1, q−1) having a prime fac-
tor (between 64 and 80 bits) to improve server-aided RSA computations. This
proposal, however, was later shown to be insecure by McKee & Pinch [168],
their attacks being the same attacks presented earlier in this chapter.

In 2006, Hinek [105] revisited the problem and introduced common prime
RSA as described in this chapter, except that only public exponents of
size N1−γ were considered. Later in 2006, Jochemsz and May [119] pre-
sented Attack 11.8, which significantly reduced the region of “safe” parameter
choices from [105]. Using public exponents of size N was later considered by
Hinek [106].





Chapter 12

Dual RSA

In this chapter we consider Dual RSA, a variant of RSA, that is designed to
reduce the space requirements for storing the public and private keys when
two instances of RSA are required. Dual RSA, introduced by Sun et al. [236],
is essentially two instances of RSA that share the same public and private ex-
ponents but have different moduli. Since the public and private exponents are
the same, only one copy of each is needed to be stored. For certain parameter
choices, the total space requirement for Dual RSA is less than that for other
alternatives, such as using two instances of RSA with compressed moduli or
using Twin RSA [143], another variant of RSA. A comparison of memory
requirements will be made at the end of the chapter.

12.1 Dual RSA

Consider two instances of RSA with the same public and private exponent
but different moduli. Combining the keys of these two instances, and remov-
ing the redundant exponents, one obtains a single instance of Dual RSA with
public key (e, N1, N2) and private key (d, p1, q1, p2, q2), when standard decryp-
tion is used. We assume that the public and private exponents are inverses
modulo φ(N1) and modulo φ(N2). That is, they both satisfy

ed ≡ 1 (mod φ(N1))
ed ≡ 1 (mod φ(N2)),

and so, they also satisfy the two equations

ed = 1 + k1ϕ(N1) = 1 + k1(N1 − s1)
ed = 1 + k2ϕ(N2) = 1 + k2(N2 − s2),

where k1 and k2 are some positive integers. These equations are called the
Dual RSA key equations or simply the key equations.

When CRT decryption is used, instead of standard decryption, the two
instances of RSA share the same public exponent e and CRT-exponents dp, dq.
Combining the keys here, and again removing the redundant exponents, one
obtains a single instance of Dual CRT-RSA with public key (e, N1, N2) and
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private key (dp, dq, p1, q1, p2, q2). The public exponent and CRT-exponents
satisfy

edp ≡ 1 (mod (p1 − 1)) edp ≡ 1 (mod (p2 − 1))
edq ≡ 1 (mod (q1 − 1)) edq ≡ 1 (mod (q2 − 1)),

and so, also satisfy the equations

edp = 1 + kp1(p1 − 1) edp = 1 + kp2(p2 − 1)
edq = 1 + kq1(q1 − 1)︸ ︷︷ ︸

CRT-equations for N1

, edq = 1 + kq2(q2 − 1)︸ ︷︷ ︸
CRT-equations for N2

, (12.1)

where kp1 , kq1 , kp2 , kq2 are positive integers. These are called the Dual CRT-
RSA equations, or simply the CRT equations. Notice that whenever the
CRT-exponents are different, i.e., dp �= dq, a valid instance of Dual CRT-RSA
does not, in general, correspond to a valid instance of Dual RSA, since each
instance of RSA will have a different private key d. When the CRT-exponents
are the same, however, it follows that dp = dq = d and so the exponents
correspond to a valid instance of both Dual RSA and Dual CRT-RSA.

There are three variations (or schemes) of Dual RSA presented in [236].
Key generation algorithms for these variations are given in Appendix C.1, for
the interested reader, however; the attacks that we consider do not exploit the
details of these algorithms. In general though, the key generation algorithms
output valid instances of Dual RSA (or Dual CRT-RSA) with moduli, N1 and
N2, that are the same size (i.e., they have the same bitlength). Therefore, the
moduli always satisfy 1/2 ≤ N1/N2 ≤ 2. To simplify notation in the attacks,
we let N = max{N1, N2} and use this as a reference when describing the size
of different parameters. For example, the public and private exponents will be
given as e = Nα and d = N δ, respectively. Also, to simplify the presentation,
we use

{(e, N1, N2), (d, p1, q1, p2, q2)},
to denote a Dual RSA key pair (i.e., a public key and its corresponding private
key), and we use

{(e, N1, N2), (dp, dq, p1, q1, p2, q2)},
to denote a valid Dual CRT-RSA key pair.

12.2 Small Public Exponent

We first consider Dual RSA with small a public exponent, which is referred
to as Dual RSA-Small-e in [236]. As will be seen, having two instances of RSA
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with the same small public exponent and same private exponent leads to some
weaknesses that do not exist in RSA.

Notice that subtracting the key equations

ed = 1 + k1ϕ(N1) = 1 + k1(N1 − s1)
ed = 1 + k2ϕ(N2) = 1 + k2(N2 − s2),

yields the equation

k′
1(N1 − s1) = k′

2(N2 − s2), (12.2)

where k′
1 = k1/ gcd(k1, k2) and k′

2 = k2/ gcd(k1, k2). Since the moduli satisfy
1/2 ≤ N1/N2 ≤ 2, it follows from this equation that the constants in the key
equations satisfy 1/2 ≤ k1/k2 ≤ 2. Using this equation as a starting point, it
can be shown that public exponents smaller than about N1/4 are insecure.

The first result we present shows that the constants k′
1 and k′

2 can be
obtained when the public exponent is small enough.

Lemma 12.1. Let {(e, N1, N2), (d, p1, q1, p2, q2)} be a valid instance of Dual
RSA with n-bit moduli and public exponent e = Nα. If n > 14 and

α <
1
4
− logN (18)

2
,

then we can generate a list that contains k2/k1, in lowest terms, in time poly-
nomial in log(N). The size of the list is also polynomial in log(N).

Proof: Starting with the condition in the lemma statement, notice that

α <
1
4
− logN (18)

2
=⇒ 2α <

1
2
− logN (18)

=⇒ e2 <
1
18

N1/2

=⇒ (k′
1)

2 <
1
18

N1/2

=⇒ 9
N1/2

<
1

2(k′
1)2

,

since k′
1 < e = Nα. Next, from equation (12.2), the difference of the key

equations

k′
1(N1 − s1) = k′

2(N2 − s2),

notice that, dividing through by N2k
′
1 and rearranging, yields the equation

N1

N2
− k′

2

k′
1

=
s1

N2
− k′

2s2

N2k′
1

=
k′
1s1 − k′

2s2

N2k′
1

,
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which, using k1, k2 < e = Nα, s < 3N1/2 and 1/2 ≤ k1/k2 ≤ 2, satisfies∣∣∣∣k′
1s1 − k′

2s2

N2k′
1

∣∣∣∣ < 3
N1/2

+
6

N1/2
=

9
N1/2

<
1

2(k′
1)2

,

where the last inequality uses the first observation based on the lemma state-
ment. Therefore, it follows that∣∣∣∣N1

N2
− k′

2

k′
1

∣∣∣∣ < 1
2(k′

1)2
,

and so, by Theorem 2.2 (continued fractions), we know that k′
2/k′

1 = k2/k1

will be one of the convergents in the continued fraction expansion of N1/N2.
Since the total number of convergents is polynomial in log(N2) and all com-
putations can be done in time polynomial in log(N), the result follows. �

Once the constants k′
1 and k′

2 are known, the Dual RSA moduli can be fac-
tored using a result from Sun et al.. We restate their result (and justification),
originally presented in [236, Section V.B3], in the following attack.

Attack 12.2. For every ε > 0 there exists n0 such that for every n > n0

the following holds: Let {(e, N1, N2), (d, p1, q1, p2, q2)} be a valid instance of
Dual RSA with n-bit moduli, public exponent e = Nα < N1/2 and private
exponent d = N δ. Let k1 and k2 be the constants in the key equations, let
k = gcd(k1, k2) = Nγ , and let k′

1 = k1/k and k′
2 = k2/k. Given k′

1 and k′
2, if

α + δ > 1 + γ − ε, (12.3)

then the moduli can be factored in time polynomial in n, provided that As-
sumptions 2.15 and 2.14 hold.

Justification: With k′
1 and k′

2 known, we again begin with equation (12.2)

k′
1(N1 − s1) = k′

2(N2 − s2),

which now only has two unknowns (s1 and s2). Since gcd(k′
1, k

′
2) = 1, we can

reduce this equation modulo k′
2 and divide by k′

1 to obtain s1 ≡ N1 (mod k′
2).

Letting σ1 = N1 mod k′
2, we can then write s1 = σ1+τ1k

′
2, where τ1 is the only

unknown part. Substituting this new expression for s1 in (12.2), we obtain

k′
1(N1 − σ1 − τ1k

′
2) = k′

2(N2 − s2), (12.4)

which suggests that we look for small solutions, modulo N1, of the polynomial

fN1(x, y) = k′
1k

′
2x − k′

2y + k′
2N2 − k′

1σ1,

since (x0, y0) = (τ1, s2) is a root of fN1(x, y) modulo N1. Notice that

|τ1| =
∣∣∣∣s1 − σ1

k′
2

∣∣∣∣ < 3N1/2−(α+δ−1−γ),
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and so defining X = 3N1/2−(α+δ−1−γ) and Y = 3N1/2, we have |x0| < X
and |y0| < Y . From Theorem 2.11, for sufficiently large N1, we can compute
(x0, y0) = (τ1, s2) provided that XY < N1 and Assumptions 2.15 and 2.14
hold. Substituting the values for X and Y , we see that the enabling condition
is satisfied whenever

α + δ > 1 + γ − ε,

where ε > 0 accounts for the constants that do not depend on N and the lower
order terms ignored in the methods implicit in Theorem 2.11. Once τ1 and s2

are known we can easily compute φ(N1) and φ(N2) which then allow us to
factor N1 and N2. Since all computations can be done in time polynomial in
log(N), the result follows. �

Combing the result of Lemma 12.1 and Attack 12.2, we can factor the
moduli in polynomial time. Essentially, we use each convergent of N1/N2 as a
candidate for k′

2/k′
1, and hence k′

1 and k′
2, in the method of Attack 12.2 and

try to factor the moduli. When the public exponent is sufficiently small, we
know from Lemma 12.1 that the desired k′

2/k′
1 is guaranteed to be one of the

convergents. Since the total number of convergents is polynomial in log(N2),
the overall attack is polynomial in log(N).

When a small public exponent is used in Dual RSA, just as with RSA,
it is expected that the private exponent will be full sized. Using δ ≈ 1, the
attack is expected to succeed whenever α > γ−ε. However, since gcd(k1, k2) ≤
k1, k2 < e, it follows that this always holds. Therefore, combining the results
of Lemma 12.1 and Attack 12.2, we see that Dual RSA is expected to be
unsafe whenever the public exponent is smaller than about N1/4. Thus, using
the common public exponent e = 216 + 1 is not secure with Dual RSA. This
is in contrast to RSA, in which public exponents as small as 3 can be secure,
and is one of the trade-offs for using Dual RSA.

12.3 Small Private Exponent

Next we consider Dual RSA with a small private exponent, called Dual
RSA-Small-d in [236]. The best known attack on Dual RSA with a small
private exponent is the common private exponent attack from Section 7.2. In
particular, restating Attack 7.2 for Dual RSA (with r = 2 and e1 = e2), which
was originally from [236], we have the following attack.

Attack 12.3. Let {(e, N1, N2), (d, p1, q1, p2, q2)} be a valid instance of Dual
RSA with private exponent d = N δ. If the private exponent satisfies

δ <
1
3
− logN (6),
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then both moduli can be factored in time polynomial in log(N), provided As-
sumption 2.6 holds.

As was shown by Sun et al. [236, Table III], the attacks work quite well
in practice, which agrees with the experimental data presented in Section 7.2
when the instances of RSA have different public exponents.

12.4 Dual CRT-RSA

We finally consider Dual CRT-RSA, with small public and CRT-exponents,
which is called Dual Generalized Rebalanced-RSA in [236]. There are two main
attacks on Dual CRT-RSA with small exponents. We illustrate these attacks
in Figure 12.1. Here, all (α, δ) pairs that lie below the plots (bounds) are
known to be insecure, by the attacks presented below. There are currently no
known attacks for pairs that lie above the plot lines. For finite modulus sizes,
however, the bounds can be slightly increased by adding exhaustive searches
to the attacks.
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FIGURE 12.1: Theoretical bounds for attacks on Dual CRT-RSA with small
public and CRT-exponents.

When the public exponent is larger than N3/8, the strongest known attack
is the CRT-RSA attack by Jochemsz and May [120]. We restate their result
for Dual CRT-RSA, Attack 8.3 with public exponent 3/8 ≤ α < 1/2, in the
following attack.
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Attack 12.4. For every ε > 0, there exists an n0 such that for every n > n0

the following holds: Let {(e, N1, N2), (dp, dq, p1, q1, p2, q2)} be a valid instance
of Dual CRT-RSA with n-bit moduli, public exponent e = Nα and CRT-
exponents dp, dq < N δ. For public exponents 3/8 ≤ α < 1/2, if the CRT-
exponents satisfy

δ <
5
14

− 4α

14
− ε,

then the moduli can be factored in time polynomial in n, provided that As-
sumptions 2.15 and 2.14 hold.

The justification of the attack follows from the justification of Attack 8.3,
for public exponents smaller than N1/2, and optimizing with respect to τ .
In particular, for public exponents 3/8 ≤ α < 1/2 it can be shown that the
bound is optimized, i.e., δ is maximized, when τ = 0.

For public exponents e < N3/8, there are two attacks that are stronger
than Attack 12.4, presented by Sun et al. [236]. We present the stronger of
these below. Like the small public exponent attack on Dual RSA, the constants
in the key equations need to first be obtained for this attack. This can be done
with the following result.

Lemma 12.5. Let {(e, N1, N2), (dp, dq, p1, q1, p2, q2)} be a valid instance of
Dual CRT-RSA with n-bit moduli, public exponent e = Nα, CRT-exponents
dp, dq < N δ and let kp2 , kq2 , kp1 , kq1 be the constants in the CRT equations. If

α + δ <
5
8
− 1

2
logN (8

√
7),

then we can generate a list that contains kp2kq2/kp1kq1 , in lowest terms, in
time polynomial in log(N). The size of the list is also polynomial in log(N).

The proof of this result follows the proof of Lemma 12.1 very closely.
Briefly, multiplying together the two RSA-CRT equations for each moduli, we
obtain, after some rearrangement,

e2dpdq − N1kp1kq1 = e(dp + dq) − 1 − kp1kq1s1

e2dpdq − N2kp2kq2 = e(dp + dq) − 1 − kp2kq2s2.
(12.5)

Taking the difference of these equations yields

kp1kq1(N1 − s1) = kp2kq2(N2 − s2),

which is the starting point for proof. Dividing this equation by N2kp1kq1 , and
rearranging, yields∣∣∣∣N1

N2
− kp2kq2

kp1kq1

∣∣∣∣ =
∣∣∣∣ s1

N2
− kp2kq2s2

kp1kq1N2

∣∣∣∣ < 9
N1/2

<
1

2(kp1kq1)2
,
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where the last inequality follows from the statement in the lemma. From
Theorem 2.2, it follows that kp2kq2/kp1kq1 , in lowest terms, is one of the
convergents in the continued fraction expansion of N1/N2. With kp2kq2/kp1kq1

known, the moduli can then be factored with the following result.

Attack 12.6. For every ε > 0 there exists n0 such that for every n > n0

the following holds: Let {(e, N1, N2), (dp, dq, p1, q1, p2, q2)} be a valid instance
of Dual CRT-RSA with n-bit moduli, public exponent e = Nα, and CRT-
exponents dp, dq < N δ. Let kp2 , kq2 , kp1 , kq1 be the constants in the CRT equa-
tions and let k′ = gcd(kp2kq2 , kp1kq1) = Nγ . If the size of the public and
CRT-exponents satisfy

α + δ >
1
2

+ γ − ε, (12.6)

then both moduli can be factored in time polynomial in n, provided Assump-
tions 2.15 and 2.14 hold.

The justification of this result follows from the justification of Attack 12.2
(and [236, Section V.B3]). Starting with

kp1kq1(N1 − s1) = kp2kq2(N2 − s2),

and dividing through by k′ = gcd(kp2kq2 , kp1kq1), the attack is essentially the
same as in Attack 12.2. The only difference is that the size of kp1kq1/k′ and
kp2kq2/k′, which is roughly N2α+2δ−1−γ is different from the size of k′

1 and
k′
2, which is roughly Nα+δ−1−γ .

Since each of the constants in the CRT equations are of size α+ δ−1/2, it
follows that the bound in the attack is equivalent, when ignoring the ε term,
to

|kp1 |, |kq1 |, |kp2 |, |kq2 | > gcd(kp2kq2 , kp1kq1).

If the constants behave as random integers, then it is expected that this in-
equality will hold with very high probability. Thus, combining the results of
Lemma 12.5 and Attack 12.6, it is expected that sufficiently large moduli can
be factored when the public and CRT-exponents satisfy α + δ < 5/8. Essen-
tially, we can try to factor the moduli using Attack 12.6 with each convergent
in the continued fraction expansion of N1/N2 until the correct convergent is
used.

12.5 Efficiency and Comparison

12.5.1 Key Generation

In order to generate instances of Dual RSA, or Dual CRT-RSA, a sig-
nificant amount of structure needs to be imposed on the RSA primes. For
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example, in the key generation algorithm for Dual RSA with a small public
exponent, Algorithm C.1, random integers x1, x2, y1, y2 of certain sizes are
repeatedly chosen until p1 = x1x2 + 1, q1 = y1y2 + 1 and p2 = x2y2 + 1
are each prime. Then a random public exponent e is repeatedly chosen until
gcd(e, x1x2y1y1) = 1 and q2 = k1x2 + 1 is prime, where k1 is the constant in
the key equation ed = 1 + k1(p1 − 1)(q1 − 1). A significant number of random
numbers needs to be generated before a valid instance is obtained. In fact, it
is observed by Sun et al. [236, Table I], that O(n) random numbers need to
be generated for Dual RSA with n-bit moduli. Thus, the total time needed to
generate a valid instance is significantly greater than that needed to generate
two random instances of RSA with the same size moduli. For Dual CRT-RSA,
where even more structure is needed, the number of random numbers needed
to generate a valid instance was observed to be about two orders of magnitude
greater than that for Dual RSA with the same size moduli. Thus, increased
key generation time is one of the trade-offs that need to be made when using
Dual RSA.

12.5.2 Space Requirements

The main purpose for introducing Dual RSA was to reduce memory re-
quirements for storing the public and private keys when two instances of RSA
are needed (see [236] for the motivation of this situation). Other alternatives
to Dual RSA include using two independent instances of RSA with a com-
pressed modulus, which we will call Compressed RSA, or using Lenstra
and de Weger’s Twin RSA [143]. There are several ways in which an RSA
modulus can be compressed. It has been shown by Joye [123], that an RSA
modulus can be compressed by a factor of 2/3. Thus, just 1/3 of the bits of
the modulus need to be stored, in addition to a seed (and algorithm) to re-
construct the remaining bits. For simplicity, we will ignore the space needed
for the seed (and algorithm) and assume that only 1/3 of the bits in total are
needed. Twin RSA is another variant of RSA, introduced by Lenstra and de
Weger [143], in which two RSA moduli can be constructed with a fixed (even)
difference, such as ±2. For a known (fixed) difference, only one modulus needs
to be stored in Twin RSA, and hence the memory requirements are decreased.
There are no known attacks specific to Twin RSA.

In Tables 12.1 and 12.2 we tabulate the minimum total fraction of bits
(relative to the size of the moduli) needed for all three variants to just avoid
all known attacks when the moduli are sufficiently large. In practice, of course,
the parameters should not be chosen to just avoid the attacks since they will
still be vulnerable to attack. In the tables, the columns N , e and d (or dp)
denote the total fraction of bits needed for both moduli, the public exponents
and the private exponents (or all four of the CRT-exponents), respectively,
for the two instances of RSA.

Table 12.1 shows the bits needed for two instances of RSA with a small
public or small private exponent, when using standard decryption. For each
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case, it is expected that the other exponent will be full sized. For small private
exponent RSA, all three variants can use the same private exponent, which
must be at least a fraction 1/3, to reduce the total number of bits. From the
table, we see that Compressed RSA requires the least amount of bits for both
cases.

TABLE 12.1: Space requirements for standard decryption and
small public or private exponent

small e small d
N e d total N e d total

Dual RSA 2 1/4 1 3.25 2 1 1/3 3.333
Compressed RSA 2/3 – 2 2.67 2/3 2 1/3 3.000

Twin RSA 1 – 2 3.00 1 2 1/3 3.333

Table 12.2 shows the bits needed for using both small public and CRT-
exponents when CRT decryption is used. For both Compressed RSA and Twin
RSA, there are no known methods for generating instances with small public
and CRT-exponents, so we consider these variants with small public exponent
(which requires less bits than small CRT-exponent versions). For Dual CRT-
RSA, we use α ≈ 3/8 and δ ≈ 2/8, which is the crossover point for the small
CRT-exponent attacks for Dual CRT-RSA. From the table, we see that Dual
CRT-RSA requires the minimum fraction of bits.

TABLE 12.2: Space requirements for CRT
decryption with small CRT-exponents

Small CRT-exponents
N e dp total

Dual RSA 2 3/8 1/2 2.625
Compressed RSA 2/3 – 2 2.667

Twin RSA 1 – 2 3.00

12.6 Additional Notes

Reducing the key sizes for RSA is desirable for both key transmission and
key storage, especially when constrained devices are used. The problem of re-
ducing the key size for RSA, while trying to maintain the security, has been
studied since as early as 1994. One of the earlier works was by Vanstone and
Zuccherato [245], who propose some methods to reduce the storage require-
ments of RSA moduli. One of these methods, using the high order bits of N to
encode the user’s name, was later shown to be insecure by Coppersmith [50].

In 1998, Lenstra [141] presented some methods for generating RSA moduli
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that can be stored with only 1/2 of the bits needed to typically store the
modulus. The main idea, apparently, had been reinvented many times since
at least 1984. See [141] for more detail.

More recent work in this area includes that of Joye [123], who showed
that RSA moduli can be compressed by a factor of 2/3, and that of Shparlin-
ski [220] and Graham and Shparlinski [90], who show that RSA moduli can be
compressed by a factor of 1/4 and 1/2, respectively. The latter results, while
providing weaker compression factors, can be proven rigorously, unlike all the
other methods, which are heuristic.

The problem was also considered with multi-prime RSA using four primes
by Vanstone and Zuccherato [244] and Lim and Lee [150], and also considered
with moduli of the form N = prq by Kanayama and Uchiyama [128].

In 2005, Lenstra and de Weger [143] introduced Twin RSA, which consists
of pairs of RSA moduli differing by a fixed small even number such as ±2.
This allows the storage of only one RSA modulus for each pair that might be
required.

In 2007, Sun et al. [236] introduced Dual RSA.

§12.2 Another method using continued fractions, similar to Lemma 12.1, is
given by Hinek [106]. The result looks for k2/k1 as one of the convergents of
(N1−1)/(N2−1), instead of N1/N2, and relies on details of the key generation
algorithm (Algorithm C.1 in Appendix C.1) to justify the bound.

A method to directly compute the constants k′
1 and k′

2, using Copper-
smith’s methods, is given by Sun et al. [236]. This method looks for small
solutions of equation (12.2) and requires a small exhaustive search on the
most significant bits of one of k′

1 or k′
2.

§12.3 Attack 12.3 is a special case of Attack 7.2, for two instances of RSA
with a common private exponent (and e1 = e2). However, Attack 12.3, from
Sun et al. [236], is the original attack and was the motivation for the more
general result of Attack 7.2 (originally presented in [106]).

§12.4 Sun et al. [236] show a similar result as Lemma 12.5. Their result looks
for kp2kq2/kp1kq1 as one of the convergents of the continued fraction expansion
of (N1 − 1)/(N2 − 1) and relies on the details of the key generation algorithm
(Algorithm C.2 in Appendix C.1) to justify the bound.





Appendix A

Distribution of g = gcd(p − 1, q − 1)

In Tables A.1 and A.2 we show the observed distribution of g = gcd(p−1, q−1),
for random primes p and q of the same bitlength (i.e., balanced primes). The
data shows the observed frequency for values of g, averaged over 100,000 trials,
for several different bitlengths of primes. The results (given as percentages
and including overall percentiles) for g ≤ 20 are shown in Table A.1 and for
20 < g ≤ 100 in Table A.2.

TABLE A.1: Distribution of 2 ≤ g ≤ 20. Percentages are
rounded to one decimal place.

Bitlength of primes
g 128 256 384 512 1024 average percentile
2 49.5 49.7 49.8 49.5 49.5 49.6 49.6
4 12.4 12.4 12.4 12.3 12.4 12.4 62.0
6 14.7 14.6 14.6 14.7 14.8 14.7 76.7
8 3.1 3.1 3.0 3.2 3.15 3.1 79.8

10 3.1 3.2 3.1 3.2 3.1 3.2 83.0
12 3.8 3.5 3.6 3.5 3.6 3.6 86.6
14 1.4 1.3 1.4 1.3 1.4 1.4 88.0
16 0.7 0.7 0.8 0.8 0.8 0.8 88.8
18 1.6 1.6 1.6 1.7 1.6 1.6 90.4
20 0.7 0.7 0.8 0.8 0.8 0.8 91.2

As the data illustrates, the value of g is expected to be very small when the
primes are randomly chosen. For example, notice that g = 2 with probability
almost 1/2, g ≤ 6 with probability about 0.76, g ≤ 20 with probability about
0.91 and g ≤ 100 with probability about 0.98.

The data in these tables are taken from Hinek [106, Appendix A].
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TABLE A.2: Distribution of 20 < g ≤ 100.
Bitlength of primes

g 128 256 384 512 1024 average percentile
22 0.477 0.513 0.508 0.522 0.4575 0.4955
24 0.954 0.955 0.897 0.897 0.9350 0.9276 ≥ 92
26 0.350 0.368 0.327 0.343 0.3225 0.3421
28 0.343 0.378 0.341 0.311 0.2900 0.3326 ≥ 93
30 0.934 0.967 0.945 0.967 0.9325 0.9491 ≥ 94
32 0.170 0.193 0.220 0.186 0.2325 0.2003
34 0.192 0.183 0.193 0.209 0.1725 0.1899
36 0.442 0.433 0.417 0.428 0.4475 0.4335 ≥ 95
38 0.157 0.166 0.164 0.125 0.1475 0.1519
40 0.217 0.200 0.199 0.180 0.1950 0.1982
42 0.407 0.419 0.393 0.421 0.4125 0.4105
44 0.142 0.128 0.126 0.113 0.1575 0.1333
46 0.137 0.091 0.103 0.096 0.0925 0.1039 ≥ 96
48 0.225 0.242 0.241 0.245 0.2275 0.2361
50 0.128 0.140 0.142 0.133 0.1100 0.1306
52 0.089 0.081 0.072 0.072 0.0825 0.0793
54 0.187 0.186 0.182 0.169 0.1750 0.1798
56 0.076 0.092 0.072 0.067 0.0775 0.0769
58 0.063 0.062 0.051 0.072 0.0650 0.0626
60 0.232 0.235 0.217 0.265 0.2175 0.2333 ≥ 97
62 0.054 0.061 0.054 0.064 0.0625 0.0591
64 0.044 0.064 0.045 0.051 0.0400 0.0488
66 0.143 0.139 0.155 0.151 0.1625 0.1501
68 0.041 0.051 0.053 0.043 0.0525 0.0481
70 0.078 0.087 0.077 0.092 0.1150 0.0898
72 0.112 0.109 0.105 0.098 0.0900 0.1028
74 0.045 0.048 0.042 0.052 0.0300 0.0434
76 0.029 0.044 0.043 0.030 0.0250 0.0342
78 0.081 0.109 0.107 0.115 0.1050 0.1034
80 0.060 0.052 0.050 0.057 0.0275 0.0493
82 0.027 0.034 0.034 0.026 0.0325 0.0307
84 0.092 0.115 0.114 0.095 0.1350 0.1102
86 0.036 0.025 0.030 0.030 0.0200 0.0282
88 0.032 0.040 0.032 0.031 0.0450 0.0360 ≥ 98
90 0.084 0.113 0.095 0.091 0.1075 0.0981
92 0.025 0.022 0.034 0.036 0.0200 0.0274
94 0.024 0.022 0.014 0.030 0.0125 0.0205
96 0.055 0.049 0.062 0.064 0.0525 0.0565
98 0.030 0.025 0.029 0.023 0.0350 0.0284

100 0.036 0.033 0.032 0.025 0.0350 0.0322



Appendix B

Geometrically Progressive Matrices

Let a and b be positive integers and let M be an (a + 1)b × (a + 1)b matrix.
The columns and rows of M are indexed by pairs (i, j) and (k, �) such that
(i, j) is the (bi+ j)-th column and (j, �) is the (bk + �)-th row of M . Thus, the
entry in the (bi+ j)-th column and (bk + �)-th row (in the usual sense) is also
the element in the (i, j)-th column and (k, �)-th row, and will be denoted by
M(i, j, k, �). Diagonal entries in the matrix have the form M(k, �, k, �).

Using this notation for matrices, Boneh and Durfee define geometrically
progressive matrices in [29] as follows.

Definition B.1. Let C, D, c0, c1, c2, c3, c4 and β be real numbers with C, D,
β ≥ 1. A matrix M is said to be geometrically progressive with parameters
(C, D, c0, c1, c2, c3, c4, β) if the following conditions hold for all i, k = 0, . . . , a
and j, � = 1, . . . , b:

1. |M(i, j, k, �)| ≤ CDc0+c1i+c2j+c3k+c4�.

2. M(k, �, k, �) = Dc0+c1k+c2�+c3k+c4�.

3. M(i, j, k, �) = 0 whenever i > k or j > �.

4. βc1 + c3 ≥ 0 and βc2 + c4 ≥ 0.

With this definition Boneh and Durfee also prove the following result about
the determinant of certain sub-matrices of geometrically progressive matrices
([29, Theorem 5.1]). We have changed the theorem statement to bound the
determinant of the sub-matrix instead of to bound the volume of a sub-lattice.
Here, we assume that the determinant has the geometric interpretation of
volume (of the parallepiped spanned by the rows in the matrix) and so the
determinant of non-square matrices is well defined.

Theorem B.1. Let M be an (a+1)b×(a+1)b geometrically progressive matrix
with parameters (C, D, c0, c1, c2, c43, c4, β), and let B be a real number. Define

SB = {(k, �) ∈ {0, . . . , a} × {1, . . . , b} : M(k, �, k, �) ≤ B},
and let s = |SB |. SB is the set of rows of M with diagonal elements no greater
than B. If MS is the matrix consisting of the rows (k, �) ∈ SB of M , then the
determinant of MS satisfies

det(MS) ≤ ((a + 1)b
)s/2(1 + C)s2 ∏

(k,�)∈SB

M(k, �, k, �).
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In [29, Lemma 5.2], Boneh and Durfee prove that the matrix My (used in
the justification of Attack 5.4) is geometrically progressive with parameters

(m2m, e,m, 1
2 + δ,− 1

2 ,−1, 1, 2),

when the constants in X and Y are ignored and when the approximation
e ≈ N is used. When considering public exponents of arbitrary size, we have
the following results.

Lemma B.2. The matrix My in the justification of Attack 5.4 is geometri-
cally progressive with parameters

(m2m, N, αm, α + δ − 1
2 + logN (6),− 1

2 + logN (3),−α, 1, 2α),

where X = 2Nα+δ−1, Y = 3N1/2 and e = Nα for 0 < α ≤ 1.

The proof follows Boneh and Durfee’s ([29, Lemma 5.2]) closely, but note
that we use the polynomial fe(x, y) = Nx + xy + 1 which is slightly different
from the polynomial f(x, y) = Ax + xy − 1, where A = (N − 1)/2, used by
Boneh and Durfee.

Proof: The row (k, �) of My corresponds to the y-shift polynomial
h�,k(xX, yY ), which can be written as

h�,k(xX, yY ) = yjY �fk
e (xX, yY )em−k =

k∑
u=0

u∑
v=0

cu,vxuyv+�,

where

cu,v =
(

k

u

)(
u

v

)
em−kNu−vXuY v+�.

Since column (i, j) of My corresponds to the monomial xiyi+j in hk,�(xX, yY ),
it follows that

My(i, j, k, �) = ci,i+j−� =
(

k

i

)(
i

i + j − �

)
em−kN �−jXiY i+j . (B.1)

Using this expression for the elements in the matrix My and letting
(C, D, c0, c1, c2, c3, c4, β) be given as above, notice the following:

1. Substituting e = Nα, X = 2Nα+δ−1 and Y = 3N1/2 into (B.1) yields

My(i, j, k, �) =
(

k

i

)(
i

i + j − �

)
em−kN �−jXiY i+j

=
(

k

i

)(
i

i + j − �

)
Nα(m−k)N �−j2iN (α+δ−1)i3i+jN

1
2 (i+j)

< m2mNα(m−k)+�−j+logN (2)i+(α+δ−1)i+logN (3)(i+j)+
1
2 (i+j)

= m2mN (αm)+(α+δ− 1
2+logN (6))i+(− 1

2+logN (3))j+(−α)k+(1)�

= CDc0+c1i+c2j+c3k+c4�.
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2. Substituting e = Nα, X = 2Nα+δ−1 and Y = 3N1/2 into (B.1) when
i = k and j = � yields

My(k, �, k, �) = em−kXkY k+�

= Nα(m−k)2kN (α+δ−1)k3k+�N
1
2 (k+�)

= Nαm−αk+logN (2)k+αk+δk−k+logN (3)k+logN (3)�+
1
2 �+

1
2k

= N (αm)+(δ+α− 1
2+logN (6))k+(− 1

2+logN (3))�+(−α)k+(1)�

= Dc0+c1k+c2�+c3k+c4�.

3. Since
(
k
i

)
= 0 whenever i > k and

(
i

i+j−�

)
= 0 whenever j > �, it follows

from (B.1) that My(i, j, k, �) = 0 whenever i > k or j > �.

4. Since α + δ > 1, notice that c1 = α + δ − 1
2 + logN (6) > 1

2 and so

βc1 + c3 = 2α(α + δ − 1
2 + logN (6)) − α > 2α 1

2 − α = 0.

Also, since α ≤ 1, notice that

βc2 + c4 = 2α(− 1
2 + logN (3)) + 1 = −α + 2α logN (3) + 1 > 0.

Therefore, all four conditions in definition B.1 are satisfied and so the matrix
My is geometrically progressive with the parameters as stated. �

A similar result holds when the public exponent is greater than N . With
all of the other parameters the same, notice that from the last condition in
Definition B.1, we have

βc1 + c3 ≥ 0 −→ β ≥ −c3

c1
,

since c1 = α + δ − 1 > 0, and

βc2 + c4 ≥ 0 −→ β ≤ c4

−c2
,

since c2 = logN (3)−1/2 < 0, for any reasonably sized modulus N . Combining
these together, any value of β satisfying

1 <
−c3

c1
≤ β ≤ c4

−c2
,

or more explicitly

1 <
α

α + δ − 1/2 + logN (6)
≤ β ≤ 2

1 − 2 logN (3)
,

can be used. For any α > 0, such a β exists provided that δ < 1/2 − logN (6).
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Some Algorithms

C.1 Dual RSA

The key generation algorithms for Dual RSA that we show here have been
previously published in [236].

The key generation algorithm for Dual RSA with small public exponent,
given in Algorithm C.1, takes (n, ne) as input, with ne < n/2, and outputs
a valid instance of Dual RSA with two n-bit moduli, an ne-bit public expo-
nent, and with high probability a full sized private exponent (i.e., nd ≈ n).
The key generation algorithm for Dual RSA with a small private exponent is
exactly the same as for a small public exponent, except that the exponents
are exchanged in the output.

Algorithm C.1 Key Generation : Small Public Exponent Dual RSA.
Input: (ne, n) such that ne < n/2.
1: Randomly select an ne-bit integer x1 and an (n/2−ne)-bit integer x2 such

that p1 = x1x2 + 1 is prime.
2: Randomly select an (n/2 − ne)-bit integer y2 such that p2 = x2y2 + 1 is

prime.
3: Randomly select an ne-bit integer y1 such that q1 = y1y2 + 1 is prime.
4: Randomly select an ne-bit integer e such that gcd(x1x2y1y2, e) = 1. Com-

pute d and k1 satisfying ed = 1 + k1(p1 − 1)(q1 − 1).
5: If q2 = k1x2 + 1 is not prime then go back to step 4.
6: Let N1 = p1q1, N2 = p2q2, and k2 = y1.

Output: The public key (e, N1, N2) and the private key (d, p1, q1, p2, q2).

(IEEE Transactions on Information Theory, (53)8:2922–2933, 2007. c© 2007
IEEE. Used with permission.)

The key generation for Dual CRT-RSA with small public and CRT-
exponents, given in Algorithm C.2, takes (n, ne, nd, nk) as input and outputs
a valid Dual CRT-RSA instance with two n-bit moduli, a ne-bit public expo-
nent and nd-bit CRT-exponents such that the constants in the CRT equations
are each nk-bits (where nk = ne + nd − n/2).
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Algorithm C.2 Key Generation : Dual CRT-RSA
Input: (ne, nd, nk, n) such that ne < n/2 and nk = ne + nd − n/2.
1: Randomly select an ne-bit integer e and set k to be the smallest integer

larger than (n/2 − ne)/nk (i.e., k = (n/2 − ne)/nk�).
2: Randomly select k − 1 nk-bit integers pa1 , . . . , pa(k−1) and an even inte-

ger pak
such that pa = pa1 · · · pa(k−1)pak

has bitlength (n/2 − ne) and
gcd(e, pa) = 1.

3: Randomly select an nk-bit integer kp1 such that gcd(e, kp1) = 1.
4: Compute dp and pb such that edp = (kp1pa)pb + 1, where e < pb < 2e and

kp1pa < dp < 2kp1pa. If p1 = papb +1 is not prime then go back to step 3.
5: If (kp1papb/pai′ ) + 1 is prime for some 1 ≤ i′ ≤ k − 1 then let p2 =

(kp1papb/pai′ ) + 1. Otherwise, go back to step 3.
6: Randomly select k − 1 nk-bit integers qa1 , . . . , qa(k−1) and an even inte-

ger qak
such that qa = qa1 · · · qa(k−1)qak

has bitlength (n/2 − ne) and
gcd(e, qa) = 1.

7: Randomly select an nk-bit integer kq1 such that gcd(e, kq1) = 1.
8: Compute dq and qb such that edq = (kq1qa)qb + 1, where e < qb < 2e and

kq1qa < dq < 2kq1qa If q1 = qaqb + 1 is not prime then go back to Step 7.
9: If (kq1qaqb/qaj′ ) + 1 is prime for some 1 ≤ j′ ≤ k − 1 then let q2 =

(kq1qaqb/qa′
j
) + 1. Otherwise, go back to step 7.

10: Let N1 = p1q1, N2 = p2q2, kp2 = pai′ and kq2 = qaj′ .
Output: The public key (e, N1, N2) and the private key (dp, dq, p1, q1, p2, q2).

(IEEE Transactions on Information Theory, (53)8:2922–2933, 2007. c© 2007
IEEE. Used with permission.)

Steps 4 and 8 of the Dual CRT-RSA key generation algorithm makes use
of the following result about relatively prime numbers.

Theorem C.1. Let a and b be two relatively prime integers. For every integer
h there exists a unique pair of integers (uh, vh) satisfying auh−bvh = 1, where
(h − 1)b < uh < hb and (h − 1)a < vh < h.



Further Reading

There are several books on RSA that compliment the material in this work.
These include:

• Katzenbeisser [130]

• Mollin [174]

• Yan [255]

There have been several PhD dissertations that focus on RSA or variants
of RSA. Often, the presentation in these is more verbose and descriptive,
compared to published results, and may be of interest. Some of these include:

• Joye [122]

• Howgrave-Graham [112]

• Coron [56]

• Durfee [70]

• May [162]

• Hinek [106]

• Jochemsz [117]

• Wu [254]

In addition, most of the main conferences in cryptography have their pro-
ceedings published in Springer’s Lecture Notes in Computer Science series.
This is an excellent source for most research in cryptography in general.
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